K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
10 tháng 10 2021

ta có :

undefined

4 tháng 3 2022

giúp mik nhanh vs khocroikhocroikhocroi plsssssss

 

a: Gọi a=UCLN(n+1;2n+3)

\(\Leftrightarrow2n+3-2\left(n+1\right)⋮a\)

\(\Leftrightarrow1⋮a\)

=>a=1

=>n+1/2n+3 là phân số tối giản

b: Gọi d=UCLN(2n+5;4n+8)

\(\Leftrightarrow4n+10-4n-8⋮d\)

\(\Leftrightarrow2⋮d\)

mà 2n+5 là số lẻ

nên n=1

=>2n+5/4n+8 là phân số tối giản

DD
14 tháng 5 2021

Đặt \(d=\left(n+1,3n+2\right)\).

Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

DD
14 tháng 5 2021

Đặt \(d=\left(2n+1,4n+3\right)\).

Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

Gọi d=ƯCLN(3n+1;4n+1)

\(\Rightarrow\)3n+1 \(⋮\)d và 4n+1\(⋮\)d

\(\Rightarrow\)(3n+1).4\(⋮\)d và (4n+1).3\(⋮\)d

hay 12n+4\(⋮\)d và 12n+3 \(⋮\)d

\(\Rightarrow\)\([\)(12n+4)-(12n+3)\(]\)\(⋮\)d

\(\Rightarrow\)1\(⋮\)d

\(\Rightarrow\)1=d

Vậy \(\frac{3n+1}{4n+1}\)là phân số tối giản.

Phần còn lại làm tương tự nha bạn.

NV
1 tháng 3 2023

a.

Gọi \(d=ƯC\left(2n+3;4n+8\right)\)

Do \(2n+3\) luôn lẻ nên d phải là số lẻ

Ta có \(\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\)  \(\Rightarrow4n+8-2\left(2n+3\right)⋮d\)

\(\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)

Mà d luôn lẻ \(\Rightarrow d=1\)

Vậy 2n+3 bà 4n+8 nguyên tố cùng nhau hay \(\dfrac{2n+3}{4n+8}\) tối giản

b. Tương tự gọi \(d=ƯC\left(3n+2;5n+3\right)\)

\(\Rightarrow\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\) \(\Rightarrow5\left(3n+2\right)-3\left(5n+3\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow3n+2\) và 5n+3 nguyên tố cùng nhau hay \(\dfrac{3n+2}{5n+3}\) tối giản

21 tháng 3 2021

Gọi \(ƯCLN\left(4n+3;3n+2\right)=d\left(d\in N^{\circledast}\right)\)

\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\3n+2⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3\left(4n+3\right)⋮d\\4\left(3n+2\right)⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}12n+9⋮d\\12n+8⋮d\end{matrix}\right.\)

\(\Rightarrow12n+9-12n-8⋮d\Rightarrow1⋮d\Rightarrow d=1\) 

\(\Rightarrow\dfrac{4n+3}{3n+2}\) là phân số tối giản

21 tháng 3 2021

Gọi  $ƯCLN(4n+3;3n+2)=d(d∈N^*)$

$⇒\begin{cases}4n+3 \vdots d\\3n+2 \vdots d\end{cases}$

$⇒\begin{cases}3.(4n+3)\vdots d\\4.(3n+2) \vdots d\end{cases}$

$⇒\begin{cases}12n+9 \vdots d\\12n+8 \vdots d\end{cases}$

$⇒12n+9 -(12n+8) \vdots d$

tức là $1 \vdots d⇒d=1(d∈N^*)$ 

Nên $ƯCLN(4n+3;3n+2)=1$

$⇒\dfrac{4n+3}{3n+2}$ là phân số tối giản

21 tháng 2 2019

gọi d là ƯC(3n - 2; 4n - 3)

\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}}\)

\(\Rightarrow12n-8-12n+9⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=\pm1\)

=> ...

\({3n-2 \over 4n-3}\)