K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có 

\(\widehat{BAD}\) chung

Do đó: ΔADB\(\sim\)ΔAEC

b: Xét ΔEHB vuông tại E và ΔDHC vuông tại H có 

\(\widehat{EHB}=\widehat{DHC}\)

Do đó: ΔEHB\(\sim\)ΔDHC

Suy ra: \(\dfrac{HE}{HD}=\dfrac{HB}{HC}\)

hay \(HE\cdot HC=HB\cdot HD\)

c: Xét tứ giác HBKC có

HB//KC

HC//BK

Do đó: HBKC là hình bình hành

Suy ra: Hai đường chéo HK và BC cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HK

hay H,M,K thẳng hàng

c: Xét tứ giác BHCK có

BH//CK

BK//CH

=>BHCK là hbh

=>M là trung điểm của HK

=>H,M,K thẳng hàng

d: BACK là hình thoi

=>M là trung điểm của AK và AK vuông góc BC 

=>A,H,M thẳng hàng

=>ΔABC cân tại A

=>AB=AC

 

3 tháng 6 2023

tham khảo
a.Ta có BK//CH(⊥AB),CK//BH(⊥AC)BK//CH(⊥AB),CK//BH(⊥AC)

→BHCK→BHCK là hình bình hành

b.Vì BHCKBHCK là hình bình hành

→HK∩BC→HK∩BC tại trung điểm mỗi đường

Do MM là trung điểm BCBC

→M→M là trung điểm HKHK

→H,M,K→H,M,K thẳng hàng

c.Ta có O,MO,M là trung điểm AK,HKAK,HK

→OM→OM là đường trung bình ΔAHKΔAHK

→OM//AH→OM//AH

Do BD∩CE=H→HBD∩CE=H→H là trực tâm ΔABC→AH⊥BCΔABC→AH⊥BC

→OM⊥BC

16 tháng 12 2023

a: ta có: BH\(\perp\)AC

CK\(\perp\)AC

Do đó: BH//CK

Ta có: CH\(\perp\)AB

BK\(\perp\)BA

Do đó: CH//BK

Xét tứ giác BHCK có

BH//CK

BK//CH

Do đó: BHCK là hình bình hành

b: Ta có: BHCKlà hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HK

=>H,M,K thẳng hàng

14 tháng 12 2023

a, Ta có:

- BH là đường cao của tam giác ABC, nên BH vuông góc với AC.

- CK là đường cao của tam giác ABC, nên CK vuông góc với AB.

- Vì BH và CK đều vuông góc với hai cạnh AB và AC của tam giác ABC, nên BHCK là hình bình hành.

 

b, Gọi M là trung điểm của BC. Ta cần chứng minh CM, HM và KM thẳng hàng.

- Vì M là trung điểm của BC, nên BM = MC.

- Ta có BHCK là hình bình hành, nên BH = CK.

- Vì BH và CK là đường cao của tam giác ABC, nên BH = 2HM và CK = 2KM.

- Từ đó, ta có BM = MC = HM = KM.

- Vì BM = MC và HM = KM, nên CM, HM và KM thẳng hàng.

 

Vậy, ta đã chứng minh được CM, HM và KM thẳng hàng.

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc DAB chung

=>ΔADB đồng dạng với ΔAEC

=>AD/AE=AB/AC

=>AD/AB=AE/AC

=>ΔADE đồng dạng vơi ΔABC

b: Xet ΔHEB vuông tại E và ΔHDC vuông tại D co

góc EHB=góc DHC

=>ΔHEB đồng dạng vơi ΔHDC

=>HE/HD=HB/HC

=>HE*HC=HB*HD

Xét tứ giác BHCK co

BH//CK

BK//CH

=>BHCK là hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

=>H,M,K thẳng hàng

ΔAED đồg dạng với ΔACB

=>góc AED=góc ACB

d: Xét ΔBEC vuông tại E và ΔBOA vuông tại O có

góc EBC chung

=>ΔBEC đồng dạng với ΔBOA

=>BE/BO=BC/BA

=>BE*BA=BO*BC

Xét ΔCDB vuông tại D và ΔCOA vuông tại O có

góc OCA chung

=>ΔCDB đồng dạng với ΔCOA

=>CD/CO=CB/CA

=>CO*CB=CD*CA

=>BE*BA+CD*CA=BC^2