Cho a,b,c,d là các số nguyên dương. Chứng tỏ rằng a/a+b+c + b/b+c+a + c/c+d+a + d/d+a+c >1
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
FF
0
NT
0
NM
Nguyễn Minh Quang
Giáo viên
18 tháng 3 2022
ta có bất đẳng thức sau :
\(\frac{a+b}{a+b+c+d}< \frac{a+b}{a+b+c}< \frac{a+b+d}{a+b+c+d}\)
tương tự ta sẽ có
\(\frac{2\left(a+b+c+d\right)}{\left(a+b+c+d\right)}< A< \frac{3\left(a+b+c+d\right)}{\left(a+b+c+d\right)}\) hay 2<A<3 nên A không phải là số nguyên
10 tháng 7 2015
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(1
HM
1
13 tháng 3 2016
mk nhìn cái phân số của bn là hoa mắt chóng mặt
bn ghi lại đi chứ nhìn zầy ít ai hỉu lém. bn vào ô "fx" trong ô gửi câu hỏi
duyệt đi
Ta có \(\frac{a}{a+b+c}\)> \(\frac{a}{a+b+c+d}\)
\(\frac{b}{b+c+a}\)> \(\frac{b}{b+c+a+d}\)
tương tự ....
suy ra cái đề > 1 dpcm
ko biet thi dung lam nhe con