Hàm số y=-2018x2 đồng biến khi:
A.x thuộc R B.x khác 0 C.x lớn hơn 0 D.x bé hơn 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`x/8 > (-7)/8`
ta có :
`a, x=-8` ( loại vì \(-8< -7\) )
`b,x=9` ( t/m )
`c, x=-10` ( loại vì \(-10< -7\) )
`d, x=0` (t/m)
`->` đáp án : `b,d`
theo tớ câu 1 thì một trong hai số phải là 0 nên tớ nghĩ là Câu 1 C:x,y khác dấu
Dễ lắm ;x =3 đó bạn
Lời giải:
ĐK: \(\left\{\begin{matrix} x+2\neq 0\\ \frac{-2}{x+2}\geq 0\\ x^2+2x\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq -2\\ x+2<0\\ x(x+2)\geq 0\end{matrix}\right.\Leftrightarrow x< -2\)
Đáp án C.
TH1: Lấy \(x_1;x_2\in R\) sao cho \(0< x_1< x_2\)
\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{a\cdot\left(x_1^2-x_2^2\right)}{x_1-x_2}=a\cdot\left(x_1+x_2\right)\)>0 vì \(x_1+x_2>0;a>0\)
=>Hàm số y=f(x)=ax2 đồng biến khi x>0 nếu a>0
TH2: Lấy \(x_1;x_2\in R^+;0< x_1< x_2\)
\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{a\cdot\left(x_1^2-x_2^2\right)}{x_1-x_2}=\dfrac{a\left(x_1-x_2\right)\left(x_1+x_2\right)}{x_1-x_2}\)
\(=a\left(x_1+x_2\right)< 0\)(vì x1+x2>0 và a<0)
=>Hàm số nghịch biến khi x>0
TH3: Lấy \(x_1;x_2\in R^-\) sao cho \(x_1< x_2< 0\)
\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{a\left(x_1^2-x_2^2\right)}{x_1-x_2}=\dfrac{a\left(x_1+x_2\right)\left(x_1-x_2\right)}{x_1-x_2}\)
\(=a\left(x_1+x_2\right)>0\) vì a<0 và x1+x2<0
=>Hàm số đồng biến khi x<0