K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2019

a < b (1)

c < d (2)

Cộng vế với vế của (1) và (2) , ta được a + c < b +d

=> Thật là một bài toán hài hước =)

18 tháng 3 2019

giải sai nha bn=)) Đừng xem như có đáp án là khinh bài toán nhé

Câu 1: b=6

Câu 1: b=6

Câu 1: b=6

2 tháng 9 2019

ta có: a + b=-2 ; a^2 + b^2 = 52

=> (a+b)^2 = 4 => a^2 + 2ab + b^2 = 4

=> 52 + 2ab= 4

=> 48= -2ab

=> ab= -24

a^3 + b^3 = (a+b)( a^2-ab+ b^2)

=> a^3 + b^3 = -2.(52+24)= -2. 76= -152

24 tháng 7 2015

Super Man mà lại còn phải lên đây để hỏi bài à?

28 tháng 7 2016

Super man hỏi bài? Nghịch lý

18 tháng 12 2020

ok

 

8 tháng 3 2019

ĐK: \(\hept{\begin{cases}a\ne-b\\b\ne-c\\c\ne-a\end{cases}}\)

Xét thương: \(\frac{a\left(b+c\right)\left(c+a\right)+b\left(c+a\right)\left(a+b\right)+c\left(a+b\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\).Do a,b,c thuộc N nên:

\(a⋮a+b\Leftrightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}\) (vì \(a⋮a\)) (1)

Khi đó: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}=1+\frac{c}{c+a}\).Giả sử \(a\left(b+c\right)\left(c+a\right)+b\left(c+a\right)\left(a+b\right)+c\left(a+b\right)\left(b+c\right)⋮\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Thì \(1+\frac{c}{c+a}\inℕ\Rightarrow\frac{c}{c+a}\inℕ\Leftrightarrow\orbr{\begin{cases}c=0\\a=0\end{cases}}\) (2)

Từ (1) và (2) suy ra:  \(\orbr{\begin{cases}a=b=0\\b=c=0\end{cases}}...\left(h\right)...c=a=0\) 


Suy ra \(\orbr{\begin{cases}a=-b=0\\b=-c=0\end{cases}..\left(h\right)..c=-a=0}\) (Mâu thuẫn với đk)

Từ đây suy ra điều giả sử là sai.Suy rađpcm.