Tìm giá trị lớn nhất hoặc nhỏ nhất của biểu thức sau:
a) A=│x+1│+5
b) B=\(\frac{x^2+15}{x^2+3}\)
Help me!!!!!!! Làm đc nhận 5 like
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a) Ta có: \(A=25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)
d) Ta có: \(D=x^2-2x+2\)
\(=x^2-2x+1+1\)
\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)
Bài 1:
a) Ta có: \(A=x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
b) Ta có: \(B=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
a) Ta có : | a + 1 | luôn lớn hơn hoặc bằng 0
=> | a + 1 | + 5 luôn lớn hơn hoặc bằng 5
Dấu "=" xảy ra <=> a + 1 = 0
=> a = -1
Vậy, A min = 5 khi và chỉ khi a = -1
Ta có: \(\left|a+1\right|\ge0\forall a\)
\(\Rightarrow\left|a+1\right|+5\ge5\forall x\)
Dấu ' = ' xảy ra \(\Leftrightarrow\left|a+1\right|=0\Leftrightarrow a=-1\)
Vậy GTNN của biểu thức \(\left|a+1\right|+5\)là \(5\Leftrightarrow a=-1\)
a, \(A-x^2+5\le5\)Dấu ''='' xảy ra khi x = 0
b, \(B=-2\left(x-1\right)^2+3\le3\)Dấu ''='' xảy ra khi x =1
c, \(C=-\left|3x-2\right|+5\le5\)Dấu ''='' xảy ra khi x = 2/3
A= |x+1|+5
Vì |x+1| > hoặc =0 => |x+1|+5 > hoặc =5
Dấu = xảy ra <=> x+1=0=> x=-1
Vậy A đạt GTNN =5 <=> x=-1
Còn câu b bạn tự làm
ủng hộ nha
|x+1|> hoặc = 0 với mọi x
suy ra |x+1|+5 > hoặc = 5 với mọi x
suy ra Amin=5 khi |x+1|=0
suy ra x+1=0
suy ra x = -1
vậy gtnn của A là 5 khi x=-1
bn nên sử dụng dấu suy ra và dấu lớn hơn hoặc vì mình ko biết đánh dấu . câu b bn làm tương tự vì x^2 cũng lớn hơn hoặc bằng 0
\(A=|x+1|+5\ge5\forall x\)
=> Min A = 5 tại \(|x+1|=0\Rightarrow x=-1\)
\(B=\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}\)
Ta có: \(x^2+3\ge3\forall x\)
Min x2 + 3 = 3 tại x = 0
Khi đó: Max B = 1+ 12/3 = 5 tại x = 0
=.= hk tốt!!
|x+1 lớn hơn hoặc bằng 0
=> |x+1|+5 lớn hơn hoặc bằng 5
Dấu = xảy ra khi x+1=0 <=> x=-1
Vậy Min A = 5 khi x=-1
1:
a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)
Dấu = xảy ra khi x=0
b: \(B=\sqrt{x+8}-7>=-7\)
Dấu = xảy ra khi x=-8