K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2020

tk cho mình đi mãi yêu

16 tháng 8 2023

Ta có bất phương trình thứ nhất:

\(2x+1< x+3\)

\(\Leftrightarrow2x-x< 3-1\)

\(\Leftrightarrow x\cdot\left(2-1\right)< 2\)

\(\Leftrightarrow x< 2\) (1)

Bất phương trình thứ hai:

\(5x\ge x-16\)

\(\Leftrightarrow5x-x\ge-16\)

\(\Leftrightarrow4x\ge-16\)

\(\Leftrightarrow x\ge-4\) (2)

Từ (1) và (2) ta có:

\(-4\le x< 2\)

2x+1<x+3 và 5x>=x-16

=>2x-x<3-1 và 5x-x>=-16

=>x<2 và x>=-4

=>-4<=x<2

Chọn A

17 tháng 2 2018

b, \(\frac{3x-2}{5}\ge\frac{x+1,6}{2}\)

=> \(6x-4\ge5x+8\)

=> \(x-12\ge0\)

=> \(x\ge12\)

bpt 2: \(\frac{6-2x+5}{6}>\frac{3-x}{4}\)

=> \(\frac{11-2x}{6}>\frac{3-x}{4}\)

=> \(44-8x>18-6x\)

=> \(x< 13\)

Vậy để t/m cả 2 bpt thì : \(12\le x< 13\)

17 tháng 2 2018

a, \(\frac{x^2+x^2-4}{x\left(x-2\right)}>2\) (Đk : \(x\ne\left(0;2\right)\))

=> \(2x^2-4>2x^2-4x\)

=> \(4x-4=4\left(x-1\right)>0\)

=> \(x>1\)(t/m) 

1 tháng 4 2015

Ta có Từ (1)<=>7x-4x<8+4

                   <=>3x<12

                    <=>x<4 (3)

Từ (2) <=> 10x-12x >-8-15

           <=>-2x > -23

           <=>x > -11,5(4)

Từ (3), (4) suy ra -11.5<x<4 mà x >0 nên 0<x<4

10 tháng 2 2019

1. Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a=x^3+3xy^2,b=y^3+3x^2y\) (a;b > 0)

(Bất đẳng thức này a;b > 0 mới dùng được)

\(A\ge\frac{4}{x^3+3xy^2+y^3+3x^2y}=\frac{4}{\left(x+y\right)^3}\ge\frac{4}{1^3}=4\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^3+3xy^2=y^3+3x^2y\\x+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3-3x^2y+3xy^2-y^3=0\\x+y=1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^3=0\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)