K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2019

Ta có:

\(a^6-b^6=\left(a^3+b^3\right)\left(a^3-b^3\right)=\left(a+b\right)\left(a-b\right)\left(a^2+ab+b^2\right)\left(a^2-ab+b^2\right)\)

Xét: a và b có cùng số dư khi chia cho 3 ( nghĩa là cùng dư 1 hoặc 2),khi đó \(a-b⋮3\Rightarrow\left(a+b\right)\left(a-b\right)\left(a^2+ab+b^2\right)\left(a^2-ab+b^2\right)⋮3\)

a và b khác số dư khi chia cho 3 (nghĩa là 1 số chia 3 dư 1,1 số chia 3 dư 2),khi đó \(a+b⋮3\Rightarrow\left(a+b\right)\left(a-b\right)\left(a^2+ab+b^2\right)\left(a^2-ab+b^2\right)⋮3\)

\(\Rightarrowđpcm\)

16 tháng 3 2019

Vì \(a\) không chia hết cho \(3\) nên \(a\) có dạng \(a=3k+1\) hoặc \(a=3k+2\) \(\left(k\in Z\right)\)

Nếu \(a=3k+1\) thì \(a^2=\left(3k+1\right)^2=9k^2+6k+1\) chia \(3\) dư \(1\)

Nếu \(a=3k+2\) thì \(a^2=\left(3k+2\right)^2=9k^2+9k+8\) chia \(3\) dư \(1\)

Vậy, nếu \(a\) không chia hết cho \(3\) thì \(a^2\) chia \(3\) dư \(1\) \(\left(1\right)\)

Tương tự, ta cũng có nếu \(b\) không chia hết cho \(3\) thì \(b^2\) chia \(3\) dư \(1\) \(\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) , suy ra \(a^2-b^2\) chia hết cho \(3\) \(\left(3\right)\)

Ta có: \(a^6-b^6=\left(a^2-b^2\right)\left[\left(a^2\right)^2+a^2b^2+\left(b^2\right)^2\right]=\left(a^2-b^2\right)\left[\left(a^2\right)^2-2a^2b^2+\left(b^2\right)^2+3a^2b^2\right]\)

\(=\left(a^2-b^2\right)\left[\left(a^2-b^2\right)+3a^2b^2\right]\)

Theo chứng minh trên, \(a^2-b^2\) chia hết cho \(3\) nên \(\left(a^2-b^2\right)^2\) chia hết cho \(3\)

Lại có: \(3a^2b^2\) chia hết cho \(3\) với mọi \(a;b\in Z\)

nên \(\left(a^2-b^2\right)+3a^2b^2\) chia hết cho \(3\) \(\left(4\right)\)

Từ \(\left(3\right)\) và \(\left(4\right)\) suy ra \(\left(a^2-b^2\right)\left[\left(a^2-b^2\right)+3a^2b^2\right]\) chia hết cho \(3.3\) hay \(a^6-b^6\) chia hết cho \(9\) \(\left(đpcm\right)\)

17 tháng 12 2014

a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)

   60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)

b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.

Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.

c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)

   2100 chia hết cho 15 => 2100b chia hết cho 15 (2)

Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)

d,Ta có : n^2+n+1=nx(n+1)+1

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.

10 tháng 6 2015

Mình xin trả lời ngắn gọn hơn!                                                                      a)60 chia hết cho 15=> 60n chia hết cho 15                                                   15 chia hết cho 15                                                                                       =>60n+15 chia hết cho 15.                                                                             60 chia hết cho 30=>60n chia hết cho 30                                                      15 không chia hết cho 30                                                                       =>60n+15 không chia hết cho 30                                             b)Gọi số tự nhiên đó là A                                                                           Giả sử A thỏa mãn cả hai điều kiện                                                           => A= 15.x+6 & = 9.y+1                                                                         Nếu A = 15x +6 => A chia hết cho 3                                                          Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=>                                    c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15.             => 1500a+2100b chia hết cho 15.                                                          d) A chia hết cho 2;5 => A chia hết cho 10.                                                 => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.)                    Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ)                           Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ)                                       => A không chia hết cho 2;5

 

 

27 tháng 7 2016

a) \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)

Vì \(n;n+1;n-1\)là 3 số nguyên liên tiếp chia hết cho 6.

\(\Rightarrow a\left(a+1\right)\left(a-1\right)\)chia hết cho 6

Hay \(a^3-a\)chia hết cho 6 (với mọi \(a\in Z\))

b) \(ab.\left(a^2-b^2\right)\)

Nếu a hoặc b chia hết cho 6 \(\Rightarrow ab.\left(a^2-b^2\right)\)chia hết cho 6

Nếu  a và b không chia hết cho 6 mà \(a^2\)chia 6 dư 1(2;3;4;5....) và \(b^2\)chia 6 dư 1(2;3;4;5...) 

\(\Rightarrow a^2-b^2\)chia 6 dư 1 (2;3;4;5...)  - 1 (2;3;4;5...) = 0

thì \(ab.\left(a^2-b^2\right)\)chia hết cho 6.

a: \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)

Vì a;a-1;a+1 là ba số nguyên liên tiếp

nên \(a\left(a-1\right)\left(a+1\right)⋮3!\)

hay \(a^3-a⋮6\)

b: \(ab\left(a^2-b^2\right)=a^3b-ab^3\)

\(=a^3b-ab+ab-ab^3\)

\(=b\left(a^3-a\right)+a\left(b-b^3\right)\)

Vì \(a^3-a⋮6\)

và \(b-b^3=-\left(b^3-b\right)⋮6\)

nên \(ab\left(a^2-b^2\right)⋮6\)

27 tháng 7 2018

Vì a không chia hết cho 3 => a có dạng 3k+1 hoặc 3k+2 (k thuộc Z)

- Nếu \(a=3k+1\Rightarrow a^2=\left(3k+1\right)^2=9k^2+6k+1\) chia 3 dư 1

- Nếu \(a=3k+2\Rightarrow a^2=\left(3k+2\right)^2=9k^2+12k+1\) chia 3 dư 1

=> nếu a không chia hết cho thì a2 chia 3 dư 1 (1)

CM tương tự ta có nếu b không chia hết cho 3 thì b2 chia 3 dư 1 (2)

Từ (1) và (2) => \(a^2-b^2⋮3\) (3)

Lại có: \(a^6-b^6=\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)=\left(a^2-b^2\right)\left(a^4-2a^2b^2+b^4+3a^2b^2\right)=\left(a^2-b^2\right)\left[\left(a^2-b^2\right)^2+3a^2b^2\right]\)

Từ (3) => \(\left(a^2-b^2\right)^2⋮3\)

Mà \(3a^2b^2⋮3\)

\(\Rightarrow\left(a^2-b^2\right)^2+3a^2b^2⋮3\) (4)

Từ (3) và (4) => \(\left(a^2-b^2\right)\left[\left(a^2-b^2\right)^2+3a^2b^2\right]⋮3.3=9\) hay \(a^6-b^6⋮9\) (đpcm)

23 tháng 8 2023

95x+70y+6^10

=19.5x + 5.14y+6^10

=5.(19x+14y)+6^10

Ta có: 5.(19x+14y) chia hết cho 5

6^10 ko chia hết cho 5 vì có số tận cùng là 6

⇒ 5.(19x+14y)+6^10 nên 95x+70y+6^10 ko chia hết cho 5

a: a^3-a=a(a^2-1)

=a(a-1)(a+1)

Vì a;a-1;a+1 là ba số liên tiếp

nên a(a-1)(a+1) chia hết cho 3!=6

=>a^3-a chia hết cho 6