Chứng minh rằng: Với mọi a,b ∈ Z, nếu a và b không chia hết cho 3 thì \(a^6-b^6\) chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)
60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)
b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.
Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.
c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)
2100 chia hết cho 15 => 2100b chia hết cho 15 (2)
Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)
d,Ta có : n^2+n+1=nx(n+1)+1
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.
Mình xin trả lời ngắn gọn hơn! a)60 chia hết cho 15=> 60n chia hết cho 15 15 chia hết cho 15 =>60n+15 chia hết cho 15. 60 chia hết cho 30=>60n chia hết cho 30 15 không chia hết cho 30 =>60n+15 không chia hết cho 30 b)Gọi số tự nhiên đó là A Giả sử A thỏa mãn cả hai điều kiện => A= 15.x+6 & = 9.y+1 Nếu A = 15x +6 => A chia hết cho 3 Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=> c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15. => 1500a+2100b chia hết cho 15. d) A chia hết cho 2;5 => A chia hết cho 10. => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.) Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ) Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ) => A không chia hết cho 2;5
a) \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)
Vì \(n;n+1;n-1\)là 3 số nguyên liên tiếp chia hết cho 6.
\(\Rightarrow a\left(a+1\right)\left(a-1\right)\)chia hết cho 6
Hay \(a^3-a\)chia hết cho 6 (với mọi \(a\in Z\))
b) \(ab.\left(a^2-b^2\right)\)
Nếu a hoặc b chia hết cho 6 \(\Rightarrow ab.\left(a^2-b^2\right)\)chia hết cho 6
Nếu a và b không chia hết cho 6 mà \(a^2\)chia 6 dư 1(2;3;4;5....) và \(b^2\)chia 6 dư 1(2;3;4;5...)
\(\Rightarrow a^2-b^2\)chia 6 dư 1 (2;3;4;5...) - 1 (2;3;4;5...) = 0
thì \(ab.\left(a^2-b^2\right)\)chia hết cho 6.
a: \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)
Vì a;a-1;a+1 là ba số nguyên liên tiếp
nên \(a\left(a-1\right)\left(a+1\right)⋮3!\)
hay \(a^3-a⋮6\)
b: \(ab\left(a^2-b^2\right)=a^3b-ab^3\)
\(=a^3b-ab+ab-ab^3\)
\(=b\left(a^3-a\right)+a\left(b-b^3\right)\)
Vì \(a^3-a⋮6\)
và \(b-b^3=-\left(b^3-b\right)⋮6\)
nên \(ab\left(a^2-b^2\right)⋮6\)
Vì a không chia hết cho 3 => a có dạng 3k+1 hoặc 3k+2 (k thuộc Z)
- Nếu \(a=3k+1\Rightarrow a^2=\left(3k+1\right)^2=9k^2+6k+1\) chia 3 dư 1
- Nếu \(a=3k+2\Rightarrow a^2=\left(3k+2\right)^2=9k^2+12k+1\) chia 3 dư 1
=> nếu a không chia hết cho thì a2 chia 3 dư 1 (1)
CM tương tự ta có nếu b không chia hết cho 3 thì b2 chia 3 dư 1 (2)
Từ (1) và (2) => \(a^2-b^2⋮3\) (3)
Lại có: \(a^6-b^6=\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)=\left(a^2-b^2\right)\left(a^4-2a^2b^2+b^4+3a^2b^2\right)=\left(a^2-b^2\right)\left[\left(a^2-b^2\right)^2+3a^2b^2\right]\)
Từ (3) => \(\left(a^2-b^2\right)^2⋮3\)
Mà \(3a^2b^2⋮3\)
\(\Rightarrow\left(a^2-b^2\right)^2+3a^2b^2⋮3\) (4)
Từ (3) và (4) => \(\left(a^2-b^2\right)\left[\left(a^2-b^2\right)^2+3a^2b^2\right]⋮3.3=9\) hay \(a^6-b^6⋮9\) (đpcm)
a: a^3-a=a(a^2-1)
=a(a-1)(a+1)
Vì a;a-1;a+1 là ba số liên tiếp
nên a(a-1)(a+1) chia hết cho 3!=6
=>a^3-a chia hết cho 6
Ta có:
\(a^6-b^6=\left(a^3+b^3\right)\left(a^3-b^3\right)=\left(a+b\right)\left(a-b\right)\left(a^2+ab+b^2\right)\left(a^2-ab+b^2\right)\)
Xét: a và b có cùng số dư khi chia cho 3 ( nghĩa là cùng dư 1 hoặc 2),khi đó \(a-b⋮3\Rightarrow\left(a+b\right)\left(a-b\right)\left(a^2+ab+b^2\right)\left(a^2-ab+b^2\right)⋮3\)
a và b khác số dư khi chia cho 3 (nghĩa là 1 số chia 3 dư 1,1 số chia 3 dư 2),khi đó \(a+b⋮3\Rightarrow\left(a+b\right)\left(a-b\right)\left(a^2+ab+b^2\right)\left(a^2-ab+b^2\right)⋮3\)
\(\Rightarrowđpcm\)
Vì \(a\) không chia hết cho \(3\) nên \(a\) có dạng \(a=3k+1\) hoặc \(a=3k+2\) \(\left(k\in Z\right)\)
Nếu \(a=3k+1\) thì \(a^2=\left(3k+1\right)^2=9k^2+6k+1\) chia \(3\) dư \(1\)
Nếu \(a=3k+2\) thì \(a^2=\left(3k+2\right)^2=9k^2+9k+8\) chia \(3\) dư \(1\)
Vậy, nếu \(a\) không chia hết cho \(3\) thì \(a^2\) chia \(3\) dư \(1\) \(\left(1\right)\)
Tương tự, ta cũng có nếu \(b\) không chia hết cho \(3\) thì \(b^2\) chia \(3\) dư \(1\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) , suy ra \(a^2-b^2\) chia hết cho \(3\) \(\left(3\right)\)
Ta có: \(a^6-b^6=\left(a^2-b^2\right)\left[\left(a^2\right)^2+a^2b^2+\left(b^2\right)^2\right]=\left(a^2-b^2\right)\left[\left(a^2\right)^2-2a^2b^2+\left(b^2\right)^2+3a^2b^2\right]\)
\(=\left(a^2-b^2\right)\left[\left(a^2-b^2\right)+3a^2b^2\right]\)
Theo chứng minh trên, \(a^2-b^2\) chia hết cho \(3\) nên \(\left(a^2-b^2\right)^2\) chia hết cho \(3\)
Lại có: \(3a^2b^2\) chia hết cho \(3\) với mọi \(a;b\in Z\)
nên \(\left(a^2-b^2\right)+3a^2b^2\) chia hết cho \(3\) \(\left(4\right)\)
Từ \(\left(3\right)\) và \(\left(4\right)\) suy ra \(\left(a^2-b^2\right)\left[\left(a^2-b^2\right)+3a^2b^2\right]\) chia hết cho \(3.3\) hay \(a^6-b^6\) chia hết cho \(9\) \(\left(đpcm\right)\)