Cho hình chữ nhật ABCD có O là giao điểm 2 đường chéo. Qua \(I\in OA\) vẽ 1 đường thẳng song song BD cắt AD và AB lần lượt tại E và F.
a) CMR: IE=IF
b) Gọi K, M lần lượt là trung điểm BE và DF. Tứ giác IKOM là hình gì?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ABCD là hình chữ nhật
nên AC và BD cắt nhau tại trung điểm của mỗi đường và bằng nhau
hay O là trung điểm chung của AC và BD, AC=BD
Xét ΔAOB có IF//OB
nên \(\dfrac{IF}{OB}=\dfrac{AI}{AO}\left(1\right)\)
Xét ΔAOD có IE//OD
nên \(\dfrac{IE}{OD}=\dfrac{AI}{AO}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{IF}{OB}=\dfrac{IE}{OD}\)
hay IF=IE
em chưa được học kiến thức này, không biết bài này còn cách chứng minh nào khác không ạ?
a:Xét hình thang ABCD có
M là trung điểm của AD
MN//AB//CD
Do đó: N là trung điểm của BC
Xét ΔDAB có
M là trung điểm của AD
ME//AB
Do đó: E là trung điểm của BD
Xét ΔABC có
N là trung điểm của BC
NF//AB
Do đó: F là trung điểm của AC
a: Xét hình thang ABCD có
M là trung điểm của AD
MN//AB//CD
Do đó: N là trung điểm của BC
Xét ΔADC có
M là trung điểm của AD
MF//DC
Do đó: F là trung điểm của AC
Xét ΔBDC có
N là trung điểm của BC
NE//DC
Do đó: E là trung điểm của BD
Cái hình câu 1 logic lắm !!!
đáng lẽ cái đường thẳng E nó pk trùng với cái tia chéo kia ( tia tia tui vẽ cx chả đều => lười sửa )
phần còn lại tự giải quyết
hk tốt
tttttttttttttttttt
a: Ta có: ABCD là hình chữ nhật
nên AC và BD cắt nhau tại trung điểm của mỗi đường và bằng nhau
hay O là trung điểm chung của AC và BD, AC=BD
Xét ΔAOB có IF//OB
nên IFOB =AIAO (1)
Xét ΔAOD có IE//OD
nên IEOD =AIAO (2)
Từ (1) và (2) suy ra IFOB =IEOD
hay IF=IE