K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2019

xét A=ab+ba=10 a+b+10b+a=11(a+b) =>A chia hết cho  11 mà 11 là số nguyên tố A là so chinh phuong=> A chia hết 11^2

=>11(a+b) chia hết 11^2=> a+b chia hết 11 mà a,b là chữ số a,b khác 0=> 

TA có bảng sau:

a23456789
b98765432
14 tháng 3 2019

thank you very much . cảm ơn bạn nha

26 tháng 11 2018

Ta có: 30 < ab + ba + ac < 289 (Ở đây mình không cần biết là các số có chữ số nào khác nhau hay không, mình chỉ cần lấy 10 x số số hạng và 99 x số số hạng là mình sẽ giới hạn được đáp án)

Do 30 < ab + ba + ac < 289 và tổng là các số nguyên tố nên ta có các tổng sau: 36; 49; 64; 81; 100; 121; 144; 169; 196; 289.

Ta xét tổng thì ta lại có: 10a + b + 10b + c + 10c + a = 11a + 11b + 11c = 11(a + b + c)
Suy ra tổng chia hết cho 11 => Tổng của chúng chỉ còn là 121

Bây giờ ta có ab + ba + ac = 121; a + b + c = 11 và các số ab, bc, ca là các số nguyên tố 

Vậy có các kết quả đúng là 13 + 37 + 71 = 121 với a = 1; b = 3; c = 7

                                        và 17 + 73 + 31 = 121 với a = 1; b = 7; c = 3

                                        và các đáp án đảo ngược khác như a = 3; b = 1; c = 7 ;...

31 tháng 7 2016

\(=10.a+b-10.b-a\)

\(=9.a-9.b\)

\(=9.\left(a-b\right)\)

Mà số này là số chính phương nên a-b chỉ có 1 giá trị nên a-b=9.

Mà a>0 nên a bằng 9 và b=0.

Số cần tìm là 90.

Chúc em học tốt^^

4 tháng 7 2015

Giả sử a là một số có lập phương là số có 4 chữ số 

\(\Rightarrow1000\le a^3\le9999\Rightarrow\sqrt[3]{1000}=10\le a\le\sqrt[3]{9999}\approx21,5\)

\(\Rightarrow10\le a\le21\)

Ta kiểm tra xem với giá trị nào của a \(\left(10\le a\le21\right)\) thì \(a^3\) là một số chính phương (thử bằng máy tính ...)

Ta có: \(16^3=4096=64^2\)

Vậy tìm được 1 số là 4096 = 642 = 163

a)Giả sử tồn tại số nguyên n sao cho \(n^2+2002\)là số chình phương.

\(\Rightarrow n^2+2002=a^2\left(a\inℕ^∗\right)\)

\(\Rightarrow a^2-n^2=2002\)

\(\Rightarrow a^2+an-an-n^2=2002\)

\(\Rightarrow a\left(a+n\right)-n\left(a+n\right)=2002\)

\(\Rightarrow\left(a-n\right)\left(a+n\right)=2002\)

Mà \(2002⋮2\)\(\Rightarrow\orbr{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}\left(1\right)}\)

Ta có : \(\left(a+n\right)-\left(a-n\right)=-2n\)

\(\Rightarrow\)\(a-n\)và \(a+n\)có cùng tính chẵn lẻ \(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\hept{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}}\)

Vì 2 là số nguyên tố \(\Rightarrow\left(a-n\right)\left(a+n\right)⋮4\)

mà 2002 không chia hết cho 4

\(\Rightarrow\)Mâu thuẫn

\(\Rightarrow\)Điều giả sử là sai

\(\Rightarrow\)Không tồn tại số nguyên n thỏa mãn đề bài

24 tháng 9 2017

mị lớp > chị nên đừng hỏi tui cái này