chung minh rang\(\frac{10^{2006}+53}{9}\) la 1 so tu nhien
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10mu 2014+53 =100000.....0053[có 2012 so 0]
ta có:1+0+0+....+5+3 =9=9chia hết cho 9
=>10 mũ 2014 +53 chia hết cho 9
Vậy 2014 mũ [2014 +53 ] /9 là một số tự nhiên
lớp 6 cũng làm được
Ta có
102006+53=1000.....0+53=100000....053
Để A là số tự nhiên
=> 102006+53 chia hết cho 9
=> 10000....053 chia hết cho 9
=> 1+0+0+0+.....+0+5+3 chia hết cho 9
=> 9 chia hết cho 9
=> A là số tự nhiên(đpcm)
Vậy bài toán đã được chứng minh
=
a,10^2011+2=100...0(2011 chữ số 0)=100......2(2011 chữ số 0).tổng các chữ số =3 nên 10^2011 +2 chia hết cho 3
b,10^2011+8=100...0(2011 chữ số 0)=100......8(2011 chữ số 0).tổng các chữ số=9 nên 10^2011 +8 chia hết cho 9
3/10=3/9*10
3/11=3/10*11
3/12=3/11*12
3/13=3/12*13
3/14=3/13*14
suy ra 3/10+3/3/11+....+3/14 nhỏ hơn 3/9*10+....+3/13*14
suy ra 3/9*10 + 3/10*11+....+3/13*14
=1/9-1/10+....+1/13-1/14
=1/9-1/14
tự viết kết quả nhé
Ta có : \(A=10^n+18n-1=10^n-1-9n+27n\)
\(=99...9-9n+27n\)( n c/s 9 )
\(=9\left(11...1-n\right)+27n\)( n c/s 1 )
Vì : \(11...1-n⋮3\Rightarrow9\left(11...1-n\right)⋮27\)
Mà : \(27n⋮27\Rightarrow A⋮27\)
Vậy ...
Ta có :
\(A=10^n+18n-1=10^n-1+18n-1+1\\ =\left(10^n-1\right)+18n\\ =\left(10^n-1^n\right)+18n\)
Ta có công thức :
\(a^m-b^m⋮a-b\) với mọi a;b thuộc R
\(\Rightarrow10^n-1^n⋮10-1\\ \Rightarrow10^n-1^n⋮9\\ \Rightarrow10^n-1-18n⋮9\left(\text{đ}pcm\right)\)
giup mk vs
\(\frac{10^{2006}+53}{9}\)
\(=\frac{10^{2006}-10+63}{9}\)
\(=\frac{10\left(10^{2005}-1\right)+63}{9}\)
\(=\frac{10\left(10^{2005}-1\right)}{9}+7\)
Có 10 chia 9 dư 1
=> 102005 chia cho 9 có số dư là 12005 = 1
=> 102005 - 1 chia hết cho 9
\(\Rightarrow10\left(10^{2005}-1\right)⋮9\)
\(\Leftrightarrow\frac{10^{2006}+53}{9}\)là số tự nhiên. (ĐPCM)