Tam giác ABC, vẽ về phía ngoài tam giác các tam giác đều ABE, ACF. Gọi I là TĐ của BC, H là giao điểm 3 đường cao tam giác ABE. Trên tia đối của tia IH lấy K sao cho IH = IK
a) cm: HB = KC
b) cm: tam giác AHF = tam giác CKF
c) tam giác HKF đều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hỉnh nha
tg abe đều suy ra ae=eb=ab và bea=eba=eab=60 độ
tg acf đeu suy raac=cf=af và afc=fca=fac=60 độ
gọi gọi EN,AG,BM là đường cao của tg EBA VÀ CÁC ĐƯỜNG CAO CẮT NHAU TẠI TRỰC TÂM H
CMĐ TG ENB=ENA (CH GN) SUY RA NB=NA(2 CẠNG TƯƠNG ỨNG )
CMĐ TG HNB=HNA(C GC) SUY RA HB=HA(2 CẠNH TƯƠNG ỨNG ) (1)
CMĐ TG HIB=KIC (C G C) SUY RA HB=CK (2 CẠNH TƯƠNG ỨNG) VÀ GÓC HBI=KCI(2)
TỪ (1) VÀ (2) SUY RA HA=CK
CMĐ GÓC EBH=ABH=30 ĐỘ HAN
TA CÓ KCF+ACF+ACB+ICK=360
KCF =360-ACF-ACB-ICK =360-60-ACB-HBI=300-ACB-IBH(3)
TA CÓ GÓC HAF =HAB+BAC+CAF=30+BAC+60=90+BAC = 90+(180-ABC-ACB)=270-ABC-ACB=270-(IBH-30)-ACB =270-IBH+30-ACB=300-ACB-IBH(4)
TỪ (3) VÀ (4) TA SUY RA DC GÓC HAF=KCF
CMĐ TG HAF=KCF(C G C)
CHỖ NÀO BN KO HIỂU Ở BÀI MÌNH TRÌNH BÀY BN CÓ THỂ HỎI MÌNH .TAB CHO MÌNH NẾU ĐÚNG NHA
chỗ cậu chứng minh các tam giác bằng nhau thì hơi dài.Cậu nên áp dụng t/c tam giác đều:
Có H là trực tâm của tam giác ABE
Mà tam giác ABE đều => H cũng là trọng tâm
=> BN=NA ( t/c đường trung tuyến )
MÀ EN vuông góc với AB ( Cách vẽ),BN=NA (cnt)=>N thuộc đường trung trực AB=>AH=BH ( t/c)
Xét ΔAIB và ΔBCE có
AI=BC
BE=BA
góc IAB=góc EBC
=>ΔABI=ΔBEC
=>góc AIB=góc BCE
ΔHIB vuông tại H có góc AIB+góc IBH=90 độ
=>góc BCE+góc IBH=90 độ
=>CE vuông góc BI
Phải là cho tam giác ABC đều , vẽ ra phía ngoài 2 tam giác ABE và tam giác CEF đều chứ
bạn có thể hướng dẫn phần b và c được ko