K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3:

góc C=90-50=40 độ

Xét ΔABC vuông tại A có sin C=AB/BC

=>4/BC=sin40

=>\(BC\simeq6,22\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)

1:

góc C=90-60=30 độ

Xét ΔABC vuông tại A có

sin B=AC/BC

=>3/BC=sin60

=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)

=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)

17 tháng 8 2023

còn câu 2 

 

26 tháng 3 2020

mọi ngouiwf trả lời câu này giúp mik vs

1: 

góc BAH+góc KAC=90 độ

góc BAH+góc ABH=90 độ

=>góc KAC=góc ABH

Xét ΔHBA vuông tại H và ΔKAC vuông tại K có

BA=AC

góc ABH=góc CAK

=>ΔHBA=ΔKAC

21 tháng 3 2022

C

1 tháng 10 2023

Câu a) với b) tính cos, tan, sin là tính góc hay cạnh vậy cậu?

1 tháng 10 2023

 

 

6 tháng 3 2022

A,tại B

15 tháng 4 2019

hình dễ nên tự vẽ

a, xét 2 t.giác vuông ABM và HBM có:

                BM cạnh chung

                \(\widehat{ABM}\)=\(\widehat{HBM}\)(gt)

=> t.giác ABM=t.giác HBM(cạnh huyền- góc nhọn)

=> AB=BH(2 cạnh tương ứng)

b, ta có: \(\widehat{ABM}\)+\(\widehat{BAM}\)+\(\widehat{AMB}\)=180 độ

=>30 độ+90 độ +\(\widehat{AMB}\)=180 độ

=>\(\widehat{AMB}\)=60 độ mà \(\widehat{AMB}\)=\(\widehat{CMD}\)(vì đối đỉnh)

=>\(\widehat{CMD}\)=60 độ

xét t.giác MCD có: \(\widehat{CMD}\)+\(\widehat{MDC}\)+\(\widehat{MCD}\)=180 độ

=>60 độ+ 90 độ+ \(\widehat{MCD}\)=180 độ

=>\(\widehat{MCD}\)=30 độ(1)

Mặt khác \(\Delta\)ABC có:\(\widehat{ABC}\)+\(\widehat{BAC}\)+\(\widehat{ACB}\)=180 độ

=>60 độ+90 độ+\(\widehat{ACB}\)=180 độ

=> \(\widehat{ACB}\)=30 độ(2)

từ (1) và (2) suy ra\(\widehat{BCA}\)=\(\widehat{ACD}\)

c,

Đề 1: 

a: Xét ΔABH vuông tại H có 

\(AB^2=AH^2+HB^2\)

hay HB=18(cm)

Xét ΔBCA vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BC=50\left(cm\right)\\HC=32\left(cm\right)\end{matrix}\right.\)

Xét ΔACH vuông tại H có 

\(AC^2=AH^2+HC^2\)

nên AC=40(cm)

b: Xét ΔAHC vuông tại H và ΔDHB vuông tại H có

\(\widehat{HAC}=\widehat{HDB}\)

Do đó: ΔAHC\(\sim\)ΔDHB

Suy ra: \(\dfrac{AC}{DB}=\dfrac{HC}{HB}\)

hay \(DB=\dfrac{32}{18}\cdot40=\dfrac{640}{9}\left(cm\right)\)