Tìm giá trị nhỏ nhất m của biểu thức \(P=sin^2x+2cos^2x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(P=sin^2x+cos^2x+cos^2x=1+cos^2x\)
Mà \(0\le cos^2x\le1\Rightarrow1\le P\le2\)
\(P_{min}=1\) khi \(cosx=0\)
\(P_{max}=2\) khi \(cosx=\pm1\)
b/ \(P=8sin^2x+3\left(1-2sin^2x\right)=3+2sin^2x\)
Mà \(0\le sin^2x\le1\Rightarrow3\le P\le5\)
\(P_{min}=3\) khi \(sinx=0\)
\(P_{max}=5\) khi \(sinx=\pm1\)
c/ \(P=\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)=sin^2x-cos^2x=-cos2x\)
Mà \(-1\le cos2x\le1\Rightarrow-1\le P\le1\)
\(P_{min}=-1\) khi \(cos2x=1\)
\(P_{max}=1\) khi \(cos2x=-1\)
d/ \(P=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)\)
\(=1-3sin^2x.cos^2x=1-\frac{3}{4}\left(2sinx.cosx\right)^2=1-\frac{3}{4}sin^22x\)
Mà \(0\le sin^22x\le1\Rightarrow\frac{1}{4}\le P\le1\)
\(P_{min}=\frac{1}{4}\) khi \(sin2x=\pm1\)
\(P_{max}=1\) khi \(sin2x=0\)
\(M=x^4-x^3-x^3+x^2+x^2-2x+1\)
\(=x^3\left(x-1\right)-x^2\left(x-1\right)+\left(x-1\right)^2\)
\(=\left(x-1\right)\left(x^3-x^2\right)+\left(x-1\right)^2\)
\(=\left(x-1\right)^2\cdot x^2+\left(x-1\right)^2=\left(x-1\right)^2\left(x^2+1\right)\)
\(\left(x-1\right)^2\ge0\)\(\forall x\)
\(x^2+1\ge1\)\(\forall x\)
Do đó: \(M>=1\)
Dấu = xảy ra khi x=0
P= \(1-cos^2x+2cos^2x=1+cos^2x\)
Ta có:
\(0\le cos^2x\le1\)
=> \(1\le P\le2\)
min P=1 <=> \(cos^2x=0\Leftrightarrow cosx=0\Leftrightarrow x=\frac{\pi}{2}+k\pi\)