K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2019

Moọe,làm xong tự nhiên olm tải lại tap.

Vẽ giùm cái hình (hồi nãy vẽ hình đẹp lắm mà giờ bị mất->lười vẽ)

a)Xét tam giác DMB và AME có:

\(\hept{\begin{cases}MA=MD\left(gt\right)\\\widehat{AME}=\widehat{DMB}\left(đđ\right)\\BM=EM\left(gt\right)\end{cases}}\Rightarrow\Delta DMB=\Delta AME\Rightarrow AE=BD\)

b)Từ \(\Delta DMB=\Delta AME\Rightarrow\widehat{MDB}=\widehat{MAE}=90^o\Rightarrow AE//BD\) (so le trong) (1)

Đến đây chứng minh FA // DC bằng cách chứng minh tam giác AMF = tam giác DMC để suy ra góc CMD = góc AMF = 90(so le trong)

Từ đó suy ra E;A;F thẳng hàng.

4 tháng 4 2022

đ đ là gì vậy

 

a: Xét tứ giác AEDB có

M là trung điểm chung của AD và EB

=>AEDB là hbh

=>AE=BD

b: Xét ΔABC có góc ACB<góc ABC

nên AB<AC

Xét ΔABC có

AB<AC

BD,CD lần lượt là hình chiếu của AB,AC trên BC

=>BD<CD

c: Xét tứ giác AFDC có

M là trung điểm chung của AD và FC

=>AFDC là hbh

=>AF//DC

=>AF//BC

mà AE//BC

nên F,A,E thẳng hàng

a: Xét tứ giác AEDB có

M là trung điểm chung của AD và EB

=>AEDB là hìnhbình hành

=>AE=BD

b: góc ACB<góc ABC

=>AB<AC

=>DB<DC

c: Xét tứ giác AFDC có

M là trung điểm chung của AD và FC

=>AFDC là hình bình hành

=>AF//DC

=>F,A,E thẳng hàng

a: Xét tứ giác AEDB có

M là trung điểm chung của AD và EB

=>AEDB là hình bình hành

=>AE=DB và AE//DB

=>AE//BC

b: BD=AE
mà AE<AC

nên BD<AC
c: Xét tứ giác AFDC có

M là trung điểm chung của AD và FC

=>AFDC là hình bình hành

=>AF//DC

mà AE//DC

nên A,E,F thẳng hàng

28 tháng 2 2023

Cho mik hỏi chút với ạ, làm sao bạn chứng minh được AE<AC ạ?

7 tháng 3 2019

Câu hỏi của Tuấn Anh Nguyễn - Toán lớp 7 - Học toán với OnlineMath

Em xem bài ở link này nhé! Câu b

16 tháng 7 2021

Câu C bạn cm AFCE là hình chữ nhật , FE là đường chéo => E,F,M thẳng hàng vì 2 đường chéo hình chữ nhật đi qua trung điểm của mỗi đường.

 

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC

25 tháng 8 2021

TL:

1) Xét tam giác ABM và tam giác CDM có:

- AM = CM

- Góc AMB = góc CMD (2 góc đối đỉnh)

- BM = DM

-> Tam giác ABM = tam giác CDM (c.g.c)

2) Vì tam giác ABM = tam giác CDM 

-> Góc MAB = góc MCD = 90o

-> MC vuông góc vs CD hay AC vuông góc vs DC 

3) Vì E là trung điểm của BC , M là trung điểm của AC -> EM là đường trung trực của tam giác ABC -> EM//AB mà AB//DC (cùng vuông góc với AC) nên EM//DC hay MF//DC, ta có:

- M là trung điểm của AC (giả thiết)

- MF//DC (cmt)

Nên MF là đường trung trực của tam giác ACD

-> F là trung điểm của AD

EM RẢNH NÊN EM MỚI TL CHỨ LÂU NHƯ NÀY EM KO RẢNH CHẮC KO TL ĐÂU

6 tháng 2 2022

TL:

1) Xét tam giác ABM và tam giác CDM có:

- AM = CM

- Góc AMB = góc CMD (2 góc đối đỉnh)

- BM = DM

-> Tam giác ABM = tam giác CDM (c.g.c)

2) Vì tam giác ABM = tam giác CDM 

-> Góc MAB = góc MCD = 90o

-> MC vuông góc vs CD hay AC vuông góc vs DC 

3) Vì E là trung điểm của BC , M là trung điểm của AC -> EM là đường trung trực của tam giác ABC -> EM//AB mà AB//DC (cùng vuông góc với AC) nên EM//DC hay MF//DC, ta có:

- M là trung điểm của AC (giả thiết)

- MF//DC (cmt)

Nên MF là đường trung trực của tam giác ACD

-> F là trung điểm của AD