K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 10 2021

ĐKXĐ: \(x\ge1\)

\(x^2+x-2+4\sqrt{x-1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)+4\sqrt{x-1}=0\)

Do \(x\ge1\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x+2\right)\ge0\\\sqrt{x-1}\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x-1\right)\left(x+2\right)+4\sqrt{x-1}\ge0\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\left(x-1\right)\left(x+2\right)=0\\\sqrt{x-1}=0\end{matrix}\right.\) \(\Rightarrow x=1\)

3 tháng 10 2021

Kl:x=1undefined

23 tháng 5 2017

a/ \(2\left(x^2-3x+2\right)=3\sqrt{x^3+8}\)

\(\Rightarrow2x^2-6x+4=3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)

\(\Rightarrow\left(-2\right)\left(x+2\right)+2\left(x^2-2x+4\right)=3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)

Chia 2 vế cho x2 - 2x + 4 ta được:

\(\left(-2\right).\frac{x+2}{x^2-2x+4}+2=3\sqrt{\frac{x+2}{x^2-2x+4}}\)

Đặt \(a=\sqrt{\frac{x+2}{x^2-2x+4}}\left(a\ge0\right)\) ta được:

\(-2a^2-3a+2=0\Rightarrow\left(1-2a\right)\left(a+2\right)=0\Rightarrow\orbr{\begin{cases}a=\frac{1}{2}\left(n\right)\\a=-2\left(l\right)\end{cases}}\)

\(a=\frac{1}{2}\Leftrightarrow\sqrt{\frac{x+2}{x^2-2x+4}}=\frac{1}{2}\Rightarrow\frac{x+2}{x^2-2x+4}=\frac{1}{4}\)

\(\Rightarrow x^2-6x-4=0\Rightarrow\orbr{\begin{cases}x=3+\sqrt{13}\\x=3-\sqrt{13}\end{cases}}\) (cái này tính denta là ra kết quả thôi)

                                                        Vậy có 2 nghiệm trên

câu b, c tương tự thôi

22 tháng 4 2023

Mình làm câu 2 trước nhé:

đkxđ: \(\dfrac{1}{2}< x\le2\)

 Áp dụng BĐT Bunyakovsky, ta có \(VT=\left(1.\sqrt{x}+1.\sqrt{2-x}\right)\)\(\le\sqrt{\left(1^2+1^2\right)\left[\left(\sqrt{x}\right)^2+\left(\sqrt{2-x}\right)^2\right]}\) \(=2\). ĐTXR \(\Leftrightarrow x=2-x\Leftrightarrow x=1\) (nhận). Vậy \(VT\le2\)     (1)

 Mặt khác, ta có \(\left(x-1\right)^2\ge0\) \(\Leftrightarrow x^2-\left(2x-1\right)\ge0\) \(\Leftrightarrow\left(x-\sqrt{2x-1}\right)\left(x+\sqrt{2x-1}\right)\ge0\). Do \(x+\sqrt{2x-1}>0\) nên điều này có nghĩa là \(x\ge\sqrt{2x-1}\) \(\Rightarrow\dfrac{x}{\sqrt{2x-1}}\ge1\) \(\Leftrightarrow\dfrac{2x}{\sqrt{2x-1}}\ge2\) hay \(VP\ge2\)  (2). ĐTXR \(\Leftrightarrow x=1\) (nhận)

 Từ (1) và (2) suy ra \(VT\le2\le VP\), do đó pt đã cho \(\Leftrightarrow VT=VP\) \(\Leftrightarrow x=1\) 

 Vậy pt đã cho có nghiệm duy nhất \(x=1\)

22 tháng 4 2023

Không=))

AH
Akai Haruma
Giáo viên
19 tháng 12 2021

Bạn tham khảo lời giải tại đây:

https://hoc24.vn/cau-hoi/giai-pt-sqrtx-2sqrt4-x2x2-5x-1.219493072549

12 tháng 6 2017

đề có sai ko nhỉ xài đủ pp mà vừa lẻ vừa xấu hết

26 tháng 6 2017

Đề đúng nhé các bạn. Bài này phải sử dụng pp hàm số mới đc. có thể vô ngiệm hoặc nghiệm xấu đấy

9 tháng 8 2017

a)\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)

\(pt\Leftrightarrow\sqrt{3x^2+6x+3+4}+\sqrt{5x^2+10x+5+9}=-x^2-2x+4\)

\(\Leftrightarrow\sqrt{3\left(x^2+2x+1\right)+4}+\sqrt{5\left(x^2+2x+1\right)+9}=-x^2-2x+4\)

\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}=-x^2-2x+4\)

Dễ thấy: \(\hept{\begin{cases}3\left(x+1\right)^2\ge0\\5\left(x+1\right)^2\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3\left(x+1\right)^2+4\ge4\\5\left(x+1\right)^2+9\ge9\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\sqrt{3\left(x+1\right)^2+4}\ge2\\\sqrt{5\left(x+1\right)^2+9}\ge3\end{cases}}\)

\(\Rightarrow VT=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge2+3=5\)

Và \(VP=-x^2-2x+4=-x^2-2x-1+5\)

\(=-\left(x^2+2x+1\right)+5=-\left(x+1\right)^2+5\le5\)

SUy ra \(VT\ge VP=5\Leftrightarrow x=-1\)

b)\(\sqrt{x-2\sqrt{x-1}}-\sqrt{x-1}=1\)

\(pt\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}-\sqrt{x-1}=1\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2-\sqrt{x-1}=1\)

..... giải nốt tiếp ra x=1

c)Sửa đề \(\sqrt{x-7}+\sqrt{9-x}=x^2-16x+66\)

ĐK:....

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{x-7}+\sqrt{9-x}\right)^2\)

\(\le\left(1+1\right)\left(x-7+9-x\right)=4\)

\(\Rightarrow VT^2\le4\Rightarrow VT\le2\)

Lại có: \(VP=x^2-16x+66=x^2-16x+64+2\)

\(=\left(x-8\right)^2+2\ge2\)

Suy ra \(VT\ge VP=2\) khi \(VT=VP=2\)

\(\Rightarrow\left(x-8\right)^2+2=2\Rightarrow x-8=0\Rightarrow x=8\)

1) Ta có: \(\sqrt{21-x}+1=x\)

\(\Leftrightarrow21-x=\left(x-1\right)^2\)

\(\Leftrightarrow x^2-2x+1-21+x=0\)

\(\Leftrightarrow x^2-3x-20=0\)

\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-20\right)=9+80=89\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{3+\sqrt{89}}{2}\\x_2=\dfrac{3-\sqrt{89}}{2}\end{matrix}\right.\)

30 tháng 7 2021

1)\(\sqrt{21-x}+1=x\)

\(\Leftrightarrow21-x=\left(x-1\right)^2\)

\(\Leftrightarrow21-x=x^2-2x+1\)

\(\Leftrightarrow x^2-x-20=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-4\end{matrix}\right.\)

2)\(\sqrt{8-x}+2=x\)

\(\Leftrightarrow8-x=\left(x-2\right)^2\)

\(\Leftrightarrow8-x=x^2-4x+4\)

\(\Leftrightarrow x^2-3x-4=0\Leftrightarrow\left(x-4\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)

 

 

28 tháng 5 2017

câu a:

\(8x^2-6x+3-2x=\left(2x-1\right)\sqrt{8x^2-6x+3}\)

đặt \(t=\sqrt{8x^2-6x+3}\Leftrightarrow t^2=8x^2-6x+3\)phương trình trở thành

\(t^2-2x=\left(2x-1\right)t\Leftrightarrow t^2-\left(2x-1\right)t-2x=0\)

có \(\Delta=\left(2x-1\right)^2+8x=\left(2x+1\right)^2\Rightarrow\orbr{\begin{cases}t=-1\\t=2x\end{cases}}\)

  1. \(t=-1\Rightarrow8x^2-6x+3=1\Leftrightarrow8x^2-6x+2=0VN\)
  2. \(t=2x\Rightarrow8x^2-6x+3=4x^2\Leftrightarrow4x^2-6x+3=0VN\)
28 tháng 5 2017

Câu b:

Đặt \(t=\sqrt{x^2+1}\Leftrightarrow t^2=x^2+1\left(t>0\right)\)

PT\(\Leftrightarrow t^2-\left(x+3\right)t+3x=0\)

có :\(\Delta=\left(x+3\right)^2-4.3x=\left(x-3\right)^2\Rightarrow\orbr{\begin{cases}t=3\\t=x\end{cases}}\)

  1. \(t=3\Rightarrow9=x^2+1\Leftrightarrow x^2=8\Leftrightarrow\orbr{\begin{cases}x=2\sqrt{2}\\x=-2\sqrt{2}\end{cases}}\)
  2. \(t=x\Leftrightarrow x^2=x^2+1VN\)