K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Phương trình hoành độ giao điểm là:

\(\dfrac{1}{2}x^2-3mx+2=0\)

\(\text{Δ}=\left(-3m\right)^2-4\cdot\dfrac{1}{2}\cdot2=9m^2-4\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow\left[{}\begin{matrix}m>\dfrac{2}{3}\\m< -\dfrac{2}{3}\end{matrix}\right.\)

20 tháng 11 2019

Chọn B

đều thỏa mãn điều kiện.

 

19 tháng 3 2017

17 tháng 4 2017

Phương trình hoành độ giao điểm:  m x - 1 x + 2 = 2 x - 1   ( 1 )

Điều kiện: x ≠ - 2  Khi đó

 (1)  Suy ra: mx-1=(2x-1) (x+2) hay 2x2-(m-3)x-1=0     (2)     

Đường thẳng d cắt (C) tại hai điểm phân biệt A; B khi và chỉ khi  (1) có hai nghiệm phân biệt khi và chỉ khi ( 2)  có hai nghiệm phân biệt khác -2

⇔ ∆ = [ - ( m - 3 ) ] 2 + 8 > 0 8 + 2 m - 6 - 1 ≠ 0 ⇔ m   ≠ - 1 2 ( * )

Đặt A( x1; 2x1-1); B( x2; 2x2-1) với x1; x2 là hai nghiệm của phương trình (2).

Theo định lý Viet ta có   

x 1 + x 2 = m - 3 2 x 1 x 2 = - 1 2 , k h i   đ ó

A B = ( x 1 - x 2 ) 2 + 4 ( x 1 - x 2 ) 2 = 10 ⇔ 5 [ ( x 1 + x 2 ) 2 - 4 x 1 x 2 ] = 10 ⇔ ( m - 3 2 ) 2 + 2 = 2 ⇔ m = 3        

thỏa (*).

Vậy giá trị m cần tìm là m =3.

 

Sửa đề: y=(2a+1)x-3

Thay x=-1 vào (d), ta được:

y=2*(-1)^2=2

Thay x=-1 và y=2 vào (d), ta được:

-1(2a+1)-3=2

=>-2a-1-3=2

=>-2a=2+1+3=6

=>a=-3

23 tháng 8 2021

Phương trình hoành độ giao điểm:

\(x^2=x-2m+1\)

\(\Leftrightarrow x^2-x+2m-1=0\)

Yêu cầu bài toán thỏa mãn khi phương trình \(x^2-x+2m-1=0\) có hai nghiệm phân biệt

\(\Leftrightarrow\Delta=1-8m+4=5-8m>0\)

\(\Leftrightarrow m< \dfrac{5}{8}\)

Phương trình hoành độ giao điểm là:

\(x^2-x+2m-1=0\)

\(\text{Δ}=1^2-4\cdot1\cdot\left(2m-1\right)\)

\(=1-8m+4\)

\(=-8m+5\)

Để \(\left(P\right),\left(d'\right)\) cắt nhau tại hai điểm phân biệt thì -8m+5>0

hay \(m< \dfrac{5}{8}\) 

28 tháng 12 2020

- Xét phương trình hoành độ giao điểm :

\(x^2-3mx+m^2+1=mx+m^2\)

\(\Leftrightarrow x^2-4mx+1=0\) ( 1 )

Có : \(\Delta^,=4m^2-1\)

- Để (d) cắt ( P ) tại 2 điểm phân biệt trên trục hoành 

<=> Phương trình ( 1 ) có 2 nghiệm phân biệt .

<=> \(\Delta^,=4m^2-1\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}m\le-\dfrac{1}{2}\\m\ge\dfrac{1}{2}\end{matrix}\right.\)

- Theo viets : \(\left\{{}\begin{matrix}x_1+x_2=4m\\x_1x_2=1\end{matrix}\right.\)

( đến đây giải nốt nhá hình như thiếu đề đoạn thỏa mãn :vvv )

28 tháng 12 2020

cái trị tuyệt đối = 1 giải hộ mik vs

 

23 tháng 2 2018

17 tháng 9 2018