K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2019

*Áp dụng BĐT Svarxơ, ta có:

P\(=\frac{x^2}{1}+\frac{y^2}{1}+\frac{z^2}{1}\ge\frac{\left(x+y+z\right)^2}{3}=3\)

Vậy Pmin=3\(\Leftrightarrow\frac{x^2}{1}=\frac{y^2}{1}=\frac{z^2}{1}\Rightarrow x=y=z=1\)

NV
8 tháng 3 2019

Gọi mặt phẳng (Q) có pt \(x+y+z-3=0\)

Gọi \(M\left(a;b;c\right)\in\left(Q\right)\) sao cho \(0\le a;b;c\le2\)

\(\Rightarrow P=OM^2=a^2+b^2+c^2\)

Bài toán trở thành tìm \(M\in\left(Q\right)\) sao cho \(OM\) đạt GTLN và GTNN

- Phần GTNN thì đơn giản rồi, gọi H là hình chiếu vuông góc của O lên (Q) \(\Rightarrow OH\perp HM\Rightarrow\) tam giác OHM vuông tại H \(\Rightarrow OH\le OM\) (trong tam giác vuông cạnh huyền luôn lớn hơn hoặc bằng cạnh góc vuông)

\(\Rightarrow OM_{min}=OH\) khi \(M\) trùng H (dễ dàng tìm ra \(H\left(1;1;1\right)\) có tọa độ thỏa mãn \(0\le a;b;c\le2\))

\(\Rightarrow OM_{min}=OH=d\left(O;\left(Q\right)\right)=\frac{\left|1.0+1.0+1.0-3\right|}{\sqrt{1+1+1}}=\sqrt{3}\Rightarrow P_{min}=OM_{min}^2=3\)

- Phần GTLN hơi phức tạp chút, có lẽ do mình ko tìm ra cách giải tốt nhất

Ta thấy M luôn nằm trong hình lập phương giới hạn bởi các mặt phẳng \(x=2;y=2;z=2\)\(xOy;yOz;xOz\)

\(\Rightarrow M\) thuộc hình phẳng là tiết diện của \(\left(Q\right)\) với hình lập phương nói trên

\(\Rightarrow M\) thuộc hình lục giác đều có tọa độ lần lượt A(1;0;2); B(0;1;2); C(0;2;1); D(1;2;0); E(2;1;0); F(2;0;1) với tâm là \(H\left(1;1;1\right)\)

\(OM^2=OH^2+HM^2\Rightarrow OM_{max}\) khi \(HM_{max}\)

\(HM\le HA=HB=HC=HD=HE=HF\)

\(\Rightarrow OM_{max}\) khi \(M\) trùng A (hoặc B, C, D, E, F)

\(\Rightarrow OM_{max}^2=OH^2+HA^2=3+\left(1-1\right)^2+\left(0-1\right)^2+\left(2-1\right)^2=5\)

\(\Rightarrow P_{max}=OM_{max}^2=5\)

Khi \(\left(x;y;z\right)=\left(1;0;2\right)\) và các hoán vị

https://olm.vn/hoi-dap/detail/227981379332.html

Bạn tham khảo ở đây nhé.

31 tháng 12 2021

\(c,P=\dfrac{x^2-x^2+8xy-16y^2}{x^2+4y^2}=\dfrac{8\left(\dfrac{x}{y}\right)-16}{\left(\dfrac{x}{y}\right)^2+4}\)

Đặt \(\dfrac{x}{y}=t\)

\(\Leftrightarrow P=\dfrac{8t-16}{t^2+4}\Leftrightarrow Pt^2+4P=8t-16\\ \Leftrightarrow Pt^2-8t+4P+16=0\)

Với \(P=0\Leftrightarrow t=2\)

Với \(P\ne0\Leftrightarrow\Delta'=16-P\left(4P+16\right)\ge0\)

\(\Leftrightarrow-P^2-4P+4\ge0\Leftrightarrow-2-2\sqrt{2}\le P\le-2+2\sqrt{2}\)

Vậy \(P_{max}=-2+2\sqrt{2}\Leftrightarrow t=\dfrac{4}{P}=\dfrac{4}{-2+2\sqrt{2}}=2+\sqrt{2}\)

\(\Leftrightarrow\dfrac{x}{y}=2+2\sqrt{2}\)

Bài a hình như sai đề rồi bạn.

undefined

NV
2 tháng 3 2022

Biểu thức này chỉ có min, không có max

2 tháng 3 2022

Dạ min đó ah em ghi nhầm a tìm giúp e vs ạ

7 tháng 4 2020

Thay \(z=4-x-y\) vào phương trình dưới:

\(x^2+y^2+\left(4-x-y\right)^2=\frac{11}{2}\)

\(\Leftrightarrow2x^2+2y^2+2xy-8x-8y+16=\frac{11}{2}\)

\(\Leftrightarrow x^2+x\left(y-4\right)+y^2-4y+\frac{21}{4}=0\)

\(\Delta=\left(y-4\right)^2-4\left(y^2-4y+\frac{21}{4}\right)\)

\(=y^2-8y+16-4y^2+16y-21=-3y^2+8y-5\)

\(=\left(5-3y\right)\left(y-1\right)\ge0\)

\(\Leftrightarrow1\le y\le\frac{5}{3}\)

\(y_{max}=\frac{5}{3}\), thay vào hệ ban đầu tìm x, z

\(y_{min}=1\), làm tương tự.

Thật ra tui cũng chả biết có nghiệm hay không đâu :>

Chưa có giải hệ :>>>

NV
25 tháng 9 2019

\(\left\{{}\begin{matrix}x=2-y-z\\z^2-2xy+4=0\end{matrix}\right.\) \(\Rightarrow z^2-2y\left(2-y-z\right)+4=0\)

\(\Rightarrow z^2-4y+2y^2+2yz+4=0\)

\(\Rightarrow z^2+2yz+y^2+y^2-4y+4=0\)

\(\Rightarrow\left(z+y\right)^2+\left(y-2\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}z+y=0\\y-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=2\\z=-2\\x=2\end{matrix}\right.\)

b/ Áp dụng BĐT Cauchy-Schwarz:

\(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=1\)

\(\Rightarrow P_{min}=1\) khi \(x=y=z=\frac{2}{3}\)

13 tháng 7 2018

Aki Tsuki hattori heiji Akai Haruma

NV
11 tháng 2 2020

a/ Đơn giản là dùng phép thế:

\(x+2y+x+y+z=0\Rightarrow x+2y=0\Rightarrow x=-2y\)

\(x+y+z=0\Rightarrow z=-\left(x+y\right)=-\left(-2y+y\right)=y\)

Thế vào pt cuối:

\(\left(1-2y\right)^2+\left(y+2\right)^2+\left(y+3\right)^2=26\)

Vậy là xong

b/ Sử dụng hệ số bất định:

\(\left\{{}\begin{matrix}a\left(\frac{x}{3}+\frac{y}{12}-\frac{z}{4}\right)=a\\b\left(\frac{x}{10}+\frac{y}{5}+\frac{z}{3}\right)=b\end{matrix}\right.\)

\(\Rightarrow\left(\frac{a}{3}+\frac{b}{10}\right)x+\left(\frac{a}{12}+\frac{b}{5}\right)y+\left(\frac{-a}{4}+\frac{b}{3}\right)z=a+b\) (1)

Ta cần a;b sao cho \(\frac{a}{3}+\frac{b}{10}=\frac{a}{12}+\frac{b}{5}=-\frac{a}{4}+\frac{b}{3}\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{3}+\frac{b}{10}=\frac{a}{12}+\frac{b}{5}\\\frac{a}{3}+\frac{b}{10}=-\frac{a}{4}+\frac{b}{3}\end{matrix}\right.\) \(\Rightarrow\frac{a}{2}=\frac{b}{5}\)

Chọn \(\left\{{}\begin{matrix}a=2\\b=5\end{matrix}\right.\) thay vào (1):

\(\frac{7}{6}\left(x+y+z\right)=7\Rightarrow x+y+z=6\)