CMR: Vs mọi n nguyên dương ta luôn có \(4^{n+3}+4^{n+2}-4^{n+1}+4^n\) chia hết cho 300
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ghi sai đề ; 4n+3+4n+2-4n-1-4n =4n( 43+42-4-1)=4n.75 =4n-1.300 ta thấy n\(\inℕ^∗\) nên 4n-1.300 \(⋮\)300 \(\Rightarrow\)..............
......................(bạn ghi câu kết nha
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
Ta có : 3n + 2 - 2n + 4 + 3n + 2n
= ( 3n + 2 + 3n ) - ( 2n + 4 - 2n )
= ( 3n . 32 + 3n . 1 ) - ( 2n . 24 - 2n . 1 )
= 3n ( 32 + 1 ) - [ 2n ( 24 - 1 ) ]
= 3n . 10 - 2n . 15
= 3n - 1 . 3 . 10 - 2n - 1 . 2 .15
= 3n - 1 . 30 - 2n - 1 . 30
Vì 30 chia hết cho 30
Nên 3n - 1 . 30 chia hết cho 30
Và 2n - 1 . 30 chia hết cho 30
Suy ra 3n - 1 . 30 - 2n - 1 . 30 chia hết cho 30
Hay 3n + 2 - 2n + 4 + 3n + 2n chia hết cho 30 ( đpcm )
có biết đâu mà giúp, mong bạn thông cảm cho. Nhớ tick cho mình với
Xét 2 trường hợp
TH1: n chẵn
Mà 4 chẵn
=> n+4 chẵn chia hết cho 2
=> (n+1)(n+4) chia hết cho 2
TH2: n lẻ => n chia hai dư 1
Mà 1 chia 2 dư 1
=> n+1 chia hết cho 2
=> (n+1)(n+4) chia hết cho 2
Vậy với mọi số nguyên dương n thì (n+1)(n+4) chia hết cho 2 (Đpcm)
Sai đề ?
Đề đúng là \(4^{n+3}+4^{n+2}-4^{n+1}-4^n\)
Biến đổi tương đương :
\(4^n\left(4^3+4^2-4-1\right)\) = \(4^n\cdot75=4^{n-1}\cdot4\cdot75=4^{n-1}\cdot300⋮300\)
=> ĐPCM
ê