K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2021

Áp dụng Pytago: \(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)

Áp dụng HTL:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=3,6\left(cm\right)\\CH=\dfrac{AC^2}{BC}=6,4\left(cm\right)\end{matrix}\right.\)

Ta có \(\sin\widehat{ACB}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\approx\sin37^0\Leftrightarrow\widehat{ACB}\approx37^0\)

3 tháng 10 2021

nhầm chỗ HTL nhé

Áp dụng HTL:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH\cdot BC=AC\cdot AB\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=3,6\left(cm\right)\\AH=\dfrac{AC\cdot AB}{BC}=4,8\left(cm\right)\end{matrix}\right.\)

Bài 1: 

AH=12cm

AC=20cm

\(\widehat{ABC}=37^0\)

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: ΔBCA vuông tại A có AH vuông góc BC

nên AH^2=HB*CH

c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

2: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(BH\cdot BC=AB^2\left(1\right)\)

Xét ΔBDC vuông tại B có BA là đường cao ứng với cạnh huyền DC

nên \(AD\cdot AC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BC=AD\cdot AC\)

19 tháng 11 2021
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học trực tuyến OLM
18 tháng 3 2021

a)áp dụng định lý Py-Ta-Go cho ΔABC vuông tại A 

ta có:

BC2=AB2+AC2

BC2=62+82

BC2=36+64=100

⇒BC=\(\sqrt{100}\)=10

vậy BC=10

AB và AC không bằng nhau nên không chứng minh được bạn ơi

còn ED và AC cũng không vuông góc nên không chứng minh được luôn 

Xin bạn đừng ném đá

Tham khảo tại đây nha:

https://hoc24.vn/hoi-dap/question/887221.html

10 tháng 8 2021

ảm ơn ạ :3

 

 

14 tháng 12 2023

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=10^2-6^2=64\)

=>\(AC=\sqrt{64}=8\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=48/10=4,8(cm)

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)

nên \(\widehat{B}\simeq53^0\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BH\cdot10=6^2=36\)

=>BH=36/10=3,6(cm)

ΔAHB vuông tại H

=>\(S_{HAB}=\dfrac{1}{2}\cdot HA\cdot HB=\dfrac{1}{2}\cdot4,8\cdot3,6=8,64\left(cm^2\right)\)

14 tháng 12 2023

a) Để tính độ dài đường cao \(AH\) và số đo \(\angle B\), chúng ta có thể sử dụng các quy tắc trong tam giác vuông.

 

Chúng ta biết rằng trong tam giác vuông, độ dài của đường cao \(AH\) từ đỉnh vuông \(A\) xuống cạnh huyền \(BC\) có thể được tính bằng công thức:

 

\[AH = \frac{1}{2} \times BC\]

 

Trong trường hợp này:

 

\[AH = \frac{1}{2} \times 10 \, \text{cm} = 5 \, \text{cm}\]

 

Số đo của góc \(\angle B\) có thể được tính bằng cách sử dụng hàm tan trong tam giác vuông:

 

\[\tan B = \frac{AH}{AB}\]

 

\[\angle B = \arctan\left(\frac{AH}{AB}\right)\]

 

Trong trường hợp này:

 

\[\tan B = \frac{5}{6}\]

 

\[\angle B = \arctan\left(\frac{5}{6}\right)\]

 

Bạn có thể sử dụng máy tính để tính toán giá trị chính xác của \(\angle B\).

 

b) Để tính diện tích tam giác \(AHB\), chúng ta sử dụng công thức diện tích tam giác:

 

\[S_{AHB} = \frac{1}{2} \times \text{độ dài } AH \times \text{độ dài } AB\]

 

Trong trường hợp này:

 

\[S_{AHB} = \frac{1}{2} \times 5 \, \text{cm} \times 6 \, \text{cm} = 15 \, \text{cm}^2\]

 

Vậy, độ dài của đường cao \(AH\) là \(5 \, \text{cm}\), số đo của góc \(\angle B\) có thể được tính, và diện tích tam giác \(AHB\) là \(15 \, \text{cm}^2\).

13 tháng 5 2021

b) ΔAHB vuông tại H

Áp dụng định lý Pi-ta-go ta có: AH2+ BH2= AB2

                                                         ⇒ 42 + 22 = AB2

                                                         ⇒AB2 = 20

                                                ⇒AB = √20

ΔAHC vuông tại H

Áp dụng định lý Pi-ta-go, ta có: AH2 + HC2 = AC2

                                                       ⇒4+82 = AC2

                                                         ⇒ AC= 80

                                                ⇒AC = √80

b)Vì AB>AC(√20>√80)

⇒góc C lớn hơn góc B (quan hệ giữa góc và cạnh đối diện)

13 tháng 5 2021

Bạn tự vẽ hình nhé

29 tháng 10 2021

a: \(AH=\sqrt{1.8\cdot3.2}=2.4\left(cm\right)\)

AB=3(cm)

AC=4(cm)