K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2021

Giả sử (x-a)(x-1995)+3=(x+b)(x+c)

Khi x = 1995 --> (1995+b)(1995+c)=3

Th1: 1995+b=1 và 1995+c=3

--> b=-1994; c=-1992

--> (x-a)(x-1995)+3=(x-1994)(x-1992)

--> a=1991

Th2: 1995+b=-1 và 1995+c=-3

(Bạn làm tương tự để tìm b và c, từ đó thế vào tìm được a)

3 tháng 10 2021

ú ù thank you baby

6 tháng 2 2021

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học trực tuyến OLM

9 tháng 2 2021

Lỗi kìa

6 tháng 2 2021

Giả sử (x-a)(x-10)+1 phân tích thành tích 2 đa thức bậc nhất có hệ số nguyên:(x-a)(x-10)+1 = (x-b)(x-c) x²-(10+a)x+10a+1 = x²-(b+c)x+bc => 10+a = b+c và 10a+1 = bc. bc=10a+1=10a+100 – 99 = 10(a+10)-99 = 10(b+c)-99 =>bc=10(b+c)-99 =>bc-10b-10c+100=1 (b-10)(c-10)=1 =>b-10=c-10=±1 b-10=c-10=1 => b=c=11 => a=b+c-10=12 b-10=c-10=-1 => b=c=9 => a=b+c-10=8 Vậy a=10 và a=8 a=12 => (x-a)(x-10)+1 =(x-12)(x-10)+1 = x²-22x+121 =(x-11)(x-11) a=8 => (x-a)(x-10)+1 =(x-8)(x-10)+1 = x²-18x+81=(x-9)(x-9) 

6 tháng 2 2021

ko hỉu j cả Nguyễn Thị Thuỳ Linh CTV, bn có thể trình bày rõ ràng đc ko. Cám ơn nhiều!

4 tháng 7 2018

Ta có

\(A=3x^4+11x^3-7x^2-2x+1\)có tận cùng là 1

\(1=1\cdot1=-1\cdot\left(-1\right)\)

\(\Rightarrow3x^4+11x^3-7x^2-2x+1=\left(ax+1\right)\left(bx^3+cx^2+dx+1\right)\)

Vì \(3=1\cdot3=\left(-1\right)\cdot\left(-3\right)\)

=> Ta thấy A=1 hoặc A=-1 là không thể

=> A=-3 hoặc A=3

Đặt phép tính cho từng trường hợp ta được

\(3x^4+11x^3-7x^2-2x+1=\left(-3x+1\right)\left(-x^3-4x^2+x+1\right)\)

7 tháng 8 2023

  Đặt \(P\left(x\right)=\left(x-a\right)\left(x+a\right)+5=x^2-a^2+5\). Để P(x) phân tích được thành tích các đa thức bậc nhất có hệ số nguyên thì \(P\left(x\right)=\left(x-c\right)\left(x-d\right)\) (vì hệ số cao nhất của P(x) bằng 1). Ta có:

 \(P\left(x\right)=x^2-\left(c+d\right)x+cd\)

 Đồng nhất hệ số, ta thu được \(\left\{{}\begin{matrix}c+d=0\\cd=5-a^2\end{matrix}\right.\). Không mất tính tổng quát, giả sử \(c>0\) \(\Rightarrow\left\{{}\begin{matrix}d=-c\\-c^2=5-a^2\end{matrix}\right.\)

 \(\Rightarrow a^2-c^2=5\) \(\Leftrightarrow\left(a-c\right)\left(a+c\right)=5\). Do \(a-c< a+c\) nên ta xét các trường hợp: 

 TH1: \(\left\{{}\begin{matrix}a-c=1\\a+c=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\c=2\end{matrix}\right.\) \(\Rightarrow d=-2\). Thử lại, ta thấy thỏa mãn. 

 TH2: \(\left\{{}\begin{matrix}a-c=-5\\a+c=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-3\\c=2\end{matrix}\right.\)\(\Rightarrow d=-2\). Thử lại, ta thấy thỏa mãn.

 Vậy \(a=\pm3\) thỏa ycbt.

 b) Kĩ thuật tương tự nhé.

 Để Q(x) phân tích được thành tích của 2 đa thức bậc nhất hệ số nguyên thì 

7 tháng 8 2023

a) Đối với đa thức (x+a)(x-a)+5:
Để phân tích thành tích các đa thức bậc nhất có hệ số nguyên, ta cần giải phương trình (x + a)(x - a) + 5 = 0:
x² - a² + 5 = 0.

Các giá trị của a mà khi thay vào phương trình trên, phương trình có nghiệm nguyên là các giá trị riêng. Nhưng phương trình x² - a² + 5 = 0 là một phương trình bậc hai, do đó ta có thể sử dụng công thức giải nghiệm của phương trình bậc hai:

x = [-b ± √(b² - 4ac)] / (2a)

Ở đây, a = 1, b = 0 và c = -a² + 5.
Thay vào phương trình, ta có:

x = [0 ± √(0 - 4(1)(-a² + 5)) / (2(1)]
= [± √(4a² - 20)] / 2
= ± √(a² - 5) / 2.

Để phương trình có nghiệm nguyên, a² - 5 phải là bình phương của một số nguyên. Ta có thể tìm các giá trị nguyên của a bằng cách xét từng giá trị nguyên cho a và kiểm tra xem a² - 5 có phải là bình phương của một số nguyên hay không.
Ví dụ, nếu a = 1, ta có:

a² - 5 = 1² - 5 = -4,

-4 không phải là bình phương của một số nguyên, vì vậy a = 1 không phải là giá trị riêng của đa thức.

Tiếp tục quá trình trên với các giá trị nguyên khác của a, ta sẽ tìm được giá trị của a mà khi thay vào phương trình (x + a)(x - a) + 5 = 0, phương trình có nghiệm nguyên là giá trị riêng.

b) Đối với đa thức (a - x)(5 - x) - 3:
Phân tích thành tích các đa thức bậc nhất có hệ số nguyên của đa thức này cũng tương tự như trên. Ta giải phương trình (a - x)(5 - x) - 3 = 0:

(a - x)(5 - x) - 3 = 0.

Tương tự như trên, ta có thể sử dụng công thức giải nghiệm của phương trình bậc hai:

x = [-b ± √(b² - 4ac)] / (2a).

Ở đây, a = 1, b = 6 - a và c = -3.
Thay vào phương trình, ta có:

x = [(a - 6) ± √((6 - a)² - 4(-3)(1))] / (2)

Sau đó, ta tìm các giá trị của a mà làm cho phương trình có nghiệm nguyên.

4 tháng 9 2018

đi rồi bày cho