K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2023

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)

\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)

\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)

7 tháng 5 2021

undefined

Giải:

A=1/22+1/32+1/42+...+1/92

Ta có:

1/22<1/1.2

1/32<1/2.3

1/42<1/3.4

...

1/92<1/8.9

⇒A<1/1.2+1/2.3+1/3.4+...+1/8.9

A<1/1-1/2+1/2-1/3+1/3-1/4+...+1/8-1/9

A<1/1-1/9

A<8/9

 

Ta có:

1/22>1/2.3

1/32>1/3.4

1/42>1/4.5

...

1/92>1/9.10

⇒A>1/2.3+1/3.4+1/4.5+...+1/9.10

A>1/2-1/3+1/3-1/4+1/4-1/5+...+1/9-1/10

A>1/2-1/10

A>2/5

Vậy 2/5<A<8/9 (đpcm)

Chúc bạn học tốt!

14 tháng 8 2023

1.

a.\(A=1+2^1+2^2+2^3+...+2^{2007}\)

\(2A=2+2^2+2^3+....+2^{2008}\)

b. \(A=\left(2+2^2+2^3+...+2^{2008}\right)-\left(1+2^1+2^2+..+2^{2007}\right)\)

\(=2^{2008}-1\) (bạn xem lại đề)

 

2.

\(A=1+3+3^1+3^2+...+3^7\)

a. \(2A=2+2.3+2.3^2+...+2.3^7\)

b.\(3A=3+3^2+3^3+...+3^8\)

\(2A=3^8-1\)

\(=>A=\dfrac{2^8-1}{2}\)

 

3

.\(B=1+3+3^2+..+3^{2006}\)

a. \(3B=3+3^2+3^3+...+3^{2007}\)

b. \(3B-B=2^{2007}-1\)

\(B=\dfrac{2^{2007}-1}{2}\)

 

4.

Sửa: \(C=1+4+4^2+4^3+4^4+4^5+4^6\)

a.\(4C=4+4^2+4^3+4^4+4^5+4^6+4^7\)

b.\(4C-C=4^7-1\)

\(C=\dfrac{4^7-1}{3}\)

 

5.

\(S=1+2+2^2+2^3+...+2^{2017}\)

\(2S=2+2^2+2^3+2^4+...+2^{2018}\)

\(S=2^{2018}-1\)

4:

a:Sửa đề: C=1+4+4^2+4^3+4^4+4^5+4^6

=>4*C=4+4^2+...+4^7

b: 4*C=4+4^2+...+4^7

C=1+4+...+4^6

=>3C=4^7-1

=>\(C=\dfrac{4^7-1}{3}\)

5:

2S=2+2^2+2^3+...+2^2018

=>2S-S=2^2018-1

=>S=2^2018-1

11 tháng 1 2024

Câu 3:

\(A=3+3^2+...+3^{100}\)

\(3A=3^2+3^3+...+3^{101}\)

\(3A-A=3^2+3^3+...+3^{101}-\left(3+3^2+...+3^{100}\right)\)

\(2A=3^{101}-3\) 

Mà: \(2A+3=3^N\)

\(\Rightarrow3^{101}-3+3=3^N\)

\(\Rightarrow3^{101}=3^N\)

\(\Rightarrow N=101\)

Vậy: ... 

Câu 1:

\(A=4+2^2+...+2^{20}\)

Đặt \(B=2^2+2^3+...+2^{20}\)

=>\(2B=2^3+2^4+...+2^{21}\)

=>\(2B-B=2^3+2^4+...+2^{21}-2^2-2^3-...-2^{20}\)

=>\(B=2^{21}-4\)

=>\(A=B+4=2^{21}-4+4=2^{21}\) là lũy thừa của 2

Câu 6:

Đặt A=1+2+3+...+n

Số số hạng là \(\dfrac{n-1}{1}+1=n-1+1=n\left(số\right)\)

=>\(A=\dfrac{n\left(n+1\right)}{2}\)

=>\(A⋮n+1\)

Câu 5:

\(A=5+5^2+...+5^8\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\left(5^5+5^6\right)+\left(5^7+5^8\right)\)

\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+5^4\left(5+5^2\right)+5^6\left(5+5^2\right)\)

\(=30\left(1+5^2+5^4+5^6\right)⋮30\)

22 tháng 10 2023

a) P = 1 + 3 + 3² + ... + 3¹⁰¹

= (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3⁹⁹ + 3¹⁰⁰ + 3¹⁰¹)

= 13 + 3³.(1 + 3 + 3²) + ... + 3⁹⁹.(1 + 3 + 3²)

= 13 + 3³.13 + ... + 3⁹⁹.13

= 13.(1 + 3³ + ... + 3⁹⁹) ⋮ 13

Vậy P ⋮ 13

b) B = 1 + 2² + 2⁴ + ... + 2²⁰²⁰

= (1 + 2² + 2⁴) + (2⁶ + 2⁸ + 2¹⁰) + ... + (2²⁰¹⁶ + 2²⁰¹⁸ + 2²⁰²⁰)

= 21 + 2⁶.(1 + 2² + 2⁴) + ... + 2²⁰¹⁶.(1 + 2² + 2⁴)

= 21 + 2⁶.21 + ... + 2²⁰¹⁶.21

= 21.(1 + 2⁶ + ... + 2²⁰¹⁶) ⋮ 21

Vậy B ⋮ 21

c) A = 2 + 2² + 2³ + ... + 2²⁰

= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)

= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)

= 30 + 2⁴.30 + ... + 2¹⁶.30

= 30.(1 + 2⁴ + ... + 2¹⁶)

= 5.6.(1 + 2⁴ + ... + 2¹⁶) ⋮ 5

Vậy A ⋮ 5

d) A = 1 + 4 + 4² + ... + 4⁹⁸

= (1 + 4 + 4²) + (4³ + 4⁴ + 4⁵) + ... + (4⁹⁷ + 4⁹⁸ + 4⁹⁹)

= 21 + 4³.(1 + 4 + 4²) + ... + 4⁹⁷.(1 + 4 + 4²)

= 21 + 4³.21 + ... + 4⁹⁷.21

= 21.(1 + 4³ + ... + 4⁹⁷) ⋮ 21

Vậy A ⋮ 21

e) A = 11⁹ + 11⁸ + 11⁷ + ... + 11 + 1

= (11⁹ + 11⁸ + 11⁷ + 11⁶ + 11⁵) + (11⁴ + 11³ + 11² + 11 + 1)

= 11⁵.(11⁴ + 11³ + 11² + 11 + 1) + 16105

= 11⁵.16105 + 16105

= 16105.(11⁵ + 1)

= 5.3221.(11⁵ + 1) ⋮ 5

Vậy A ⋮ 5

13 tháng 11 2023

1: \(A=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)

\(=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+...+2^{97}\right)\)

\(=30\left(1+2^4+...+2^{96}\right)⋮30\)

2:

\(B=3+3^2+3^3+...+3^{2022}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2021}+3^{2022}\right)\)

\(=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{2020}\left(3+3^2\right)\)

\(=12\left(1+3^2+...+3^{2020}\right)⋮12\)

 

11 tháng 5 2016

Muốn c/m M ko phải STN, chỉ cần chứng minh x<M<x+1

11 tháng 5 2016

ý mình là c/m như thế nào cơ? Bạn làm đầy đủ cho mình nhé!

Ta thấy:

\(2^2=2.2>1.2\Rightarrow\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(3^2=3.3>2.3\Rightarrow\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

.................

\(9^2=9.9>8.9\Rightarrow\dfrac{1}{9^2}< \dfrac{1}{8.9}\)

\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)

\(\Leftrightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}>1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}=1-\dfrac{1}{9}=\dfrac{8}{9}\)

=> Đpcm

8 tháng 5 2021

Ta thấy:

22=2.2>1.2⇒122<11.222=2.2>1.2⇒122<11.2

32=3.3>2.3⇒132<12.332=3.3>2.3⇒132<12.3

.................

92=9.9>8.9⇒192<18.992=9.9>8.9⇒192<18.9

⇒122+132+142+...+192<11.2+12.3+13.4+...+18.9⇒122+132+142+...+192<11.2+12.3+13.4+...+18.9

⇔122+132+142+...+192>1−12+12−13+13−14+...+18−19=1−19=89⇔122+132+142+...+192>1−12+12−13+13−14+...+18−19=1−19=89

=> ...(tự viết)

Ta thấy:

22=2.2>1.2⇒122<11.222=2.2>1.2⇒122<11.2

32=3.3>2.3⇒132<12.332=3.3>2.3⇒132<12.3

.................

92=9.9>8.9⇒192<18.992=9.9>8.9⇒192<18.9

⇒122+132+142+...+192<11.2+12.3+13.4+...+18.9⇒122+132+142+...+192<11.2+12.3+13.4+...+18.9

⇔122+132+142+...+192>1−12+12−13+13−14+...+18−19=1−19=89⇔122+132+142+...+192>1−12+12−13+13−14+...+18−19=1−19=89

=> 11111111111111111111110101010110000

HACK