K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

tk đi làm cho hứa

a)M = 1 + 3 + 32 +....+ 3118 + 3119

M = (1 + 3 + 32)+(33+34+35)+...+(3117+3118+3119)

M = 1x(1+3+9)+33x(1+3+9)+...+3117x(1+3+9)

M = 1x13+33x13+...+3117x13

M = 13x(1+33+...+3117)

Vậy M chia hết cho 13

22 tháng 8 2017

a)M=1+3+3^2+...+3^118+3^119

      =(1+3+3^2)+(3^3+3^4+3^5)+...+(3^117+3^118+3^119)

      =1x(1+3+9)+3^3x(1+3+9)+...+3^117x(1+3+9)

      =1x13+3^3x13+...+3^117x13

      =13x(1+3^3+...+3^117)

Vậy M chia hết cho 13

a)M=1+3+3^2+...+3^118+3^119

     M =(1+3+3^2)+(3^3+3^4+3^5)+...+(3^117+3^118+3^119)

    M  =1x(1+3+9)+3^3x(1+3+9)+...+3^117x(1+3+9)

     M =1x13+3^3x13+...+3^117x13

    M =13x(1+3^3+...+3^117)

Vậy M chia hết cho 13

Ai trên 10 điểm hỏi đáp thì mình nha mình đang cần gấp chỉ còn 59 điểm là tròn rồi mong các bạn hỗ trợ mình sẽ đền bù xứng đáng

28 tháng 3 2017

a) M =1+3+32+33+......+3118+3119
M = ( 1+3+32 ) +...+ ( 3117 + 3118+3119 )
M = 1. ( 1+3+32 ) + ... + 3117 . ( 3117 + 3118+3119 )
M = ( 1+3+32 ) .( 1 + ... + 3117 )
M = 13 . ( 1 + ... + 3117 ) \(⋮\) 13 (đpcm )

28 tháng 3 2017

b) Ta có:
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...
\(\dfrac{1}{2009^2}< \dfrac{1}{2008.2009}\)
\(\dfrac{1}{2010^2}< \dfrac{1}{2009.2010}\)

=> \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2009^2}+\dfrac{1}{2010^2}\) < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}+\dfrac{1}{2009.2010}\) (1)
Biến đổi vế trái:
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}+\dfrac{1}{2009.2010}\)

= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2008}-\dfrac{1}{2009}+\dfrac{1}{2009}-\dfrac{1}{2010}\)
= \(1-\dfrac{1}{2010}\)
= \(\dfrac{2009}{2010}< 1\) (2)

Từ (1) và (2), suy ra :
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2009^2}+\dfrac{1}{2010^2}\) < 1 hay:
N < 1

28 tháng 3 2017

M=1+3+3^2+......+3^117+3^118+3^119

M=3^0+3^1+3^2+......+3^117+3^118+3^119

M có số hạng là:

(119-0):1+1=120(số)

Vì 120 chia hết cho 3 nên ta chia dãy số M thành các nhóm,mỗi nhóm có 3 số hạng

Ta có:M=3^0+3^1+3^2+......+3^117+3^118+3^119

M=(3^0+3^1+3^2)+......+(3^117+3^118+3^119)

M=3^0.(1+3+3^2)+.......+3^117.(1+3+3^2)

M=3^0.13+......+3^117.13

M=13.(3^0+.....+3^117)

=>M chia hết cho 13

28 tháng 3 2017

Đầu bài sai rồi bạn ơi vì tất cả các số sau số 1 đều chia hết cho 3 mà 1 chia 3 dư 1 nên M chia 3 dư 1

8 tháng 12 2020

Bài 1:

a,\(A=3+3^2+3^3+...+3^{2010}\)

\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)

\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)

\(=3.40+...+3^{2007}.40\)

\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)

Vì A chia hết cho 40 nên chữ số tận cùng của A là 0

b,\(A=3+3^2+3^3+...+3^{2010}\)

\(3A=3^2+3^3+...+3^{2011}\)

\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)

\(2A=3^{2011}-3\)

\(2A+3=3^{2011}\)

Vậy 2A+3 là 1 lũy thừa của 3

17 tháng 8 2023

Bài 1 :

\(A=2+2^2+2^3+2^4+...+2^{118}+2^{119}+2^{120}\)

\(\Rightarrow A=2\left(1+2^{ }+2^2\right)+2^4\left(1+2^{ }+2^2\right)+...+2^{118}\left(1+2^{ }+2^2\right)\)

\(\Rightarrow A=2.7+2^4.7+...+2^{118}.7\)

\(\Rightarrow A=7.\left(2+2^4+...+2^{118}\right)⋮7\)

\(\Rightarrow dpcm\)

Bài 2 :

\(...=23\left(78+22\right)-15=23.100-15=2300-15=2285\)

17 tháng 8 2023

ko bt bài 1

bài 2 là

=23.(78+22)-15

=23.100-15

=2300-15

=2275

hết

28 tháng 10 2020

a)X= 40-15=25

b)2(x+35)=215-15

2(x+35)=200

x+35=100

X=65

c)(2x-3)^3=5^3

2x-3=5

2x=8

x=4

15 tháng 8 2016

Bài 1:

a) A = 210+211+212 

=210*(1+21+22)

=210*(1+2+4)

=7*210 chia hết 7

Đpcm

b)7*32=244

=32+64+128

=25+26+27

 

 

15 tháng 8 2016

Bài 2:

a)ko hiểu đề

b)nhân N với * x như dạng lp 6 âý