Cho tam giác DMN cân tại D, E thuộc DM, F thuộc DN sao cho DE=DF, NE cắt MF tại G.
a) tam giác DMF=tam giác DNE
b) Gọi G là giao điểm của MF và NE. Chứng minh tam giác GME=tam giác GNE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác DEM và tam giác DFM có :
DE = DF ( vì tam giác DEF cân tại D )
^EDM = ^FDM ( gt )
Cạnh DM chung
Suy ra : Tam giác DEM = Tam giác DFM ( c.g.c )
Suy ra :^DME = ^DMF (1)
Mà ^DME+^DMF = 180 độ (2)
Từ (1 ) và (2) suy ra : ^DME =^DMF=180độ chia 2 =90 độ
Vậy ^DME = ^DMF = 90 độ
a) XÉT \(\Delta DEM\)VÀ \(\Delta DEN\)
^D CHUNG
DM=DN \(\Rightarrow\Delta DEM=\Delta DEN\left(C-G-C\right)\)=> ^DEM=^DEN
DF=DE
b) VÌ ^DEF=^DFE MÀ ^DEM=^DEN =>^IEF=^IFE \(\Rightarrow\Delta IEF\)CÂN
c) TA CÓ \(\Delta DNM\)CÂN TẠI D NÊN ^DMN=^DNM=\(\frac{180^0-D}{2}\)(1)
TA LẠI CÓ \(\Delta DÈF\)CÂN TẠI D NÊN ^DEF=^DFE=\(\frac{180^0-D}{2}\)(2)
TỪ (1) VÀ (2) => ^DMN=^DFE
MÀ 2 GÓC NÀY Ở VỊ TRÍ ĐỒNG VỊ NÊN NM // EF
a, Xét tg DMN và tg DNQ, có:
QM=QN(Q là trung điểm của MN)
góc MQD= góc NQD(=90o)
DQ chung
=>tg QDM= tg QDN(ch-cgv)
b, Xét tg DHQ và tg DEQ, có:
góc DHQ= góc DEQ(=90o)
DQ chung
góc HDQ= góc EDQ(2 góc tương ứng)
=>tg HDQ= tg EDQ(ch-gn)
=>góc HQD= góc EQD(2 góc tương ứng)
=>QD là tia phân giác của góc HQE(đpcm)
CHÚC BẠN HỌC TỐT
tu ke hinh :
a, tam giac DMN can tai A (gt)
=> DM = DN (dn)
xet tam giac DMF va tam giac DNE co : goc D chung
ED = FD (gt)
=> tam giac DMF = tam giac DNE (c - g - c)
b, tam giac DMF = tam giac DNE (Cau a)
=> goc DMG = goc DNG (dn) (1) va goc DEN = goc DFM (dn)
goc DEN + NEM = 180 (kb)
goc DFM+ MFN = 180 (kb)
=> goc NEM = goc NFM (2)
tam giac DMN can tai D (gt)
=> DM = DN (dn)
DE = DF (gt)
DE + EM = DM
DF + FN = DN
=> EM = FN (3)
(1)(2)(3) => tam giac GME = tam giac GNE (g-c-g)