Cho \(\left(m+1\right)^2x^2-2mx+m+4=0\)
a)Tìm hệ thức liên hệ giữa 2 \(n_o\) không phụ thuộc vào m.
b)Lập 1 pt có 2 \(n_o\) là \(\dfrac{x_1}{x_2}\) và \(\dfrac{x_2}{x_1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-m\right)\)
\(=\left(2m-2\right)^2+4m\)
\(=4m^2-8m+4+4m=4m^2-4m+4\)
\(=4m^2-4m+1+3=\left(2m-1\right)^2+3>0\forall m\)
=>Phương trình luôn có hai nghiệm phân biệt
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left[-2\left(m-1\right)\right]}{1}=2\left(m-1\right)=2m-2\\x_1x_2=\dfrac{c}{a}=-\dfrac{m}{1}=-m\end{matrix}\right.\)
\(x_1+x_2+2x_1x_2=2m-2+\left(-2m\right)=-2\)
=>\(x_1+x_2+2\cdot x_1\cdot x_2\) là hệ thức không phụ thuộc vào m
b: Để phương trình có đúng 1 nghiệm âm thì nghiệm còn lại sẽ lớn hơn hoặc bằng 0
=>a*c<=0
=>1*(-m)<=0
=>-m<=0
=>m>=0
c: Để \(\left\{{}\begin{matrix}\left|x_1\right|=\left|x_2\right|\\x_1\cdot x_2< 0\end{matrix}\right.\) thì \(x_1=-x_2\)
=>\(x_1+x_2=0\)
=>2(m-1)=0
=>m-1=0
=>m=1
d: \(\left|x_1-x_2\right|=\sqrt{\left(x_1-x_2\right)^2}\)
\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=\sqrt{\left(2m-2\right)^2-4\cdot1\left(-m\right)}\)
\(=\sqrt{4m^2-8m+4+4m}\)
\(=\sqrt{4m^2-4m+4}\)
\(=\sqrt{\left(2m-1\right)^2+3}>=\sqrt{3}\forall m\)
Dấu '=' xảy ra khi 2m-1=0
=>\(m=\dfrac{1}{2}\)
a) Ta có : \(\Delta"=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\forall m\)
=> Phương trình luôn có 2 nghiệm phân biệt
b) Hệ thức Viete :
\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m-2\end{matrix}\right.\)
Khi đó \(M=\dfrac{-24}{x_1^2+x_2^2-6x_1x_2}=\dfrac{-24}{\left(x_1+x_2\right)^2-8x_1x_2}\)
\(=\dfrac{-24}{\left(2m\right)^2-8.\left(m-2\right)}=\dfrac{-6}{m^2-2m+4+=}=\dfrac{-6}{\left(m-1\right)^2+3}\)
Do (m - 1)2 + 3 \(\ge3\forall m\)
nên \(\dfrac{6}{\left(m-1\right)^2+3}\le2\Leftrightarrow M=\dfrac{-6}{\left(m-1\right)^2+3}\ge-2\)
Vậy Mmin = -2 <=> m = 1
Lời giải:
a. $\Delta'=m^2-(m^2-2)=2>0$ nên pt luôn có 2 nghiệm pb với mọi $m\in\mathbb{R}$
Áp dụng định lý Viet:
$x_1+x_2=-m$
$x_1x_2=\frac{m^2-2}{2}$
$\Rightarrow (x_1+x_2)^2=m^2=2x_1x_2+2$
$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=2$
$\Leftrightarrow x_1^2+x_2^2=2$
Đây chính là hệ thức liên hệ giữa $x_1,x_2$ không phụ thuộc $m$
b.
\(A=\frac{2x_1x_2+3}{2+2x_1x_2+1}=\frac{2x_1x_2+3}{2x_1x_2+3}=1\) nên không có có min, max.
Mình sửa lại đề : x2 - 5x + m = 0 (1)
Với m = 6
Phương trình trở thành :
x2 - 5x + 6 = 0
\(\Delta=\left(-5\right)^2-4.1.6=1>0\)
=> Phương trình 2 nghiệm phân biệt
\(x_1=\dfrac{5+\sqrt{1}}{2}=3;x_2=\dfrac{5-\sqrt{1}}{2}=2\)
Tập nghiệm S = {3;2}
b) Với m = 0 có (1) <=> x2 - 5x = 0
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=0\end{matrix}\right.\)(loại)
Với \(m\ne0\) : có \(\Delta=25-4m\)
Phương trình có nghiệm khi \(\Delta\ge0\Leftrightarrow m\le\dfrac{25}{4}\)
Hệ thức Viete : \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m\end{matrix}\right.\)
Khi đó |x1 - x2| = 3
<=> (x1 - x2)2 = 9
<=> (x1 + x2)2 - 4x1x2 = 9
<=> 52 - 4m = 9
<=> m = 4 (tm)
Vậy m = 4 thì thóa mãn yêu cầu đề
a.
\(\Delta=\left(2m+1\right)^2-4m\left(m+1\right)=1>0;\forall m\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt với mọi \(m\ne0\)
b.
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m+1}{m}\\x_1x_2=\dfrac{m+1}{m}\end{matrix}\right.\)
Trừ vế cho vế:
\(\Rightarrow x_1+x_2-x_1x_2=1\)
Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m
c.
Để biểu thức xác định \(\Rightarrow x_1x_2\ne0\Rightarrow m\ne-1\)
Khi đó: \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{7}{5}\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=\dfrac{7}{5}\)
\(\Rightarrow\dfrac{2m+1}{m+1}=\dfrac{7}{5}\Rightarrow10m+5=7m+7\)
\(\Rightarrow m=\dfrac{2}{3}\) (thỏa mãn)
\(\Delta-=m^2+4m+5=\left(m+1\right)^2+1>0;\forall m\)
Pt đã cho luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-4m-5\end{matrix}\right.\)
\(\dfrac{1}{2}x_1\left(x_1+x_2\right)-\dfrac{1}{2}x_1x_2-\left(m-1\right)x_1+x_2-2m+\dfrac{33}{2}=762019\)
\(\Leftrightarrow mx_1+\dfrac{4m+5}{2}-mx_1+x_1+x_2-2m+\dfrac{33}{2}=762019\)
\(\Leftrightarrow\dfrac{4m+5}{2}+2m-2m+\dfrac{33}{2}=762019\)
\(\Leftrightarrow2m+19=762019\)
\(\Rightarrow m=...\)
\(\Delta'=m^2-\left(m+4\right)\left(m+1\right)^2\ge0\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m}{\left(m+1\right)^2}\left(1\right)\\x_1x_2=\dfrac{m+4}{\left(m+1\right)^2}\left(2\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(m+1\right)^2=\dfrac{2m}{x_1+x_2}\\\left(m+1\right)^2=\dfrac{m+4}{x_1x_2}\end{matrix}\right.\)
\(\Rightarrow\dfrac{2m}{x_1+x_2}=\dfrac{m+4}{x_1x_2}\Leftrightarrow2mx_1x_2=\left(m+4\right)\left(x_1+x_2\right)\)
\(\Leftrightarrow2mx_1x_2=m\left(x_1+x_2\right)+4\left(x_1+x_2\right)\)
\(\Leftrightarrow m\left(2x_1x_2-x_1-x_2\right)=4\left(x_1+x_2\right)\)
\(\Leftrightarrow m=\dfrac{4\left(x_1+x_2\right)}{2x_1x_2-x_1-x_2}\) (3)
Thay m từ (3) vào (1) (hoặc (2) đều được) ta có:
\(x_1+x_2=\dfrac{\dfrac{8\left(x_1+x_2\right)}{2x_1x_2-x_1-x_2}}{\left(\dfrac{4\left(x_1+x_2\right)}{2x_1x_2-x_1-x_1}+1\right)^2}\)
\(\Leftrightarrow\left(\dfrac{3\left(x_1+x_2\right)+2x_1x_2}{2x_1x_2-x_1-x_2}\right)^2=\dfrac{8}{2x_1x_2-x_1-x_2}\)
\(\Leftrightarrow\left(3x_1+3x_2+2x_1x_2\right)^2=8\left(2x_1x_2-x_1-x_2\right)\)
Đây là biểu thức liên hệ 2 nghiệm ko phụ thuộc m
2/ Gọi pt cần tìm có 2 nghiệm \(\left\{{}\begin{matrix}x_3=\dfrac{x_1}{x_2}\\x_4=\dfrac{x_2}{x_1}\end{matrix}\right.\)
Theo định lý Viet: \(\left\{{}\begin{matrix}x_3+x_4=\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\\x_3x_4=\dfrac{x_1}{x_2}.\dfrac{x_2}{x_1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_3+x_4=\dfrac{\left(x_1+x_2\right)^2}{x_1x_2}-2=\dfrac{4m^2}{\left(m+1\right)^2\left(m+4\right)}-2\\x_3x_4=1\end{matrix}\right.\)
Theo Viet đảo, \(x_3;x_4\) là nghiệm của pt:
\(x^2-\left(\dfrac{4m^2}{\left(m+1\right)^2\left(m+4\right)}-2\right)x+1=0\)
Nếu thích bạn có thể biến đổi và rút gọn cái đống trong ngoặc kia cho gọn hơn :D
thanks bạn nhìu