cho tam giác vuông ABC vuông tại A và AB=6 cm, AC=8cm. gọi P là trung điểm BC, điểm Q đói xứng với P qua AB
a, tứ giác APBQ là hình gì ? tại sao? tính dien tích tứ giác APBQ?
b, chứng minh diện tích ACPQ= Diện tích ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Diện tích của tam giác ABC là:
\(S_{\Delta ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.8.6=24\) (cm2)
b) Ta có: N là trung điểm của AB
M là trung điểm của BC
=> MN là đường trung bình của tam giác ABC
\(\Rightarrow MN//AC\)
Mà \(AB\perp AC\) (vì tam giác ABC vuông tại A)
Suy ra: \(MN\perp AB\)
c) Trong tứ giác AMBP:
Hai đường chéo PM và AB cắt nhau tại trung điểm mỗi đường (NP = NM ; NB = NA)
=> Tứ giác AMBP là hình bình hành
Mà \(MN\perp AB\) (cmt) cũng đồng nghĩa với \(MN\perp PM\) (vì P là điểm đối xứng với M qua AB)
=> AMBP là hình thoi (vì hình bình hành có hai đường chéo vuông góc là hình thoi)
a ) Ta có : \(\widehat{A}=\widehat{D}=\widehat{E}=90^o\left(gt\right)\)
\(\Rightarrow ADME\) là hình chữ nhật ( tứ giác có ba góc vuông )
b ) Ta có : ME là đường trung bình của tam giác ABC
\(\Rightarrow ME//AB\) và \(ME=\frac{1}{2}AB=\frac{1}{2}.6=3\left(cm\right)\)
\(\Rightarrow AD=ME=3\left(cm\right)\)( cạnh đối hình chữ nhật )
Lại có : \(\hept{\begin{cases}ME//AB\left(cmt\right)\\MB=MC\left(gt\right)\end{cases}}\)
\(\Rightarrow AE=CE=\frac{AC}{2}=\frac{8}{2}=4\left(cm\right)\)
ADME : hình chữ nhật
\(\Rightarrow A_{ADME}=AD.AE=3.4=12\left(cm^2\right)\)
c ) Dễ thấy AC là đường trung trực của MK
\(\Rightarrow AM=AK\)và \(CM=CK\)
Mà AM = CM \(\left(=\frac{1}{2}BC\right)\) ( \(\Delta ABC\) vuông tại A )
\(\Rightarrow AM=AK=CM=CK\)
\(\Rightarrow AMCK\)là hình thoi ( tứ giác có 4 cạnh bằng nhau )
d ) Ta có : \(ME=\frac{1}{2}AB\)
\(\Rightarrow AB=2ME=MK\)
Hình thoi AMCK là hình vuông \(\Leftrightarrow AC=MK\)
\(\Leftrightarrow AC=AB\) ( vì AB = MK )
\(\Leftrightarrow\Delta ABC\)cân tại A
Mà \(\Delta ABC\) vuông tại A (gt)
Vậy \(\Delta ABC\)vuông cân tại A thì hình thoi AMCK là hình vuông
a, ta có:gọi H là giao điểm của PQ và AB
P là trung điểm của BC , tam giác ABC là tam giác vuông tại A
suy ra AP là đg trung tuyến của tam giác ABC
suy ra: AP=PB=> tam giác APB cân tại P
xét tam giác ABP cân P có PH vuông góc vs AB suy ra AH=HB(vì trong 1 tam giác cân đg cao cx là đg trung tuyến)
xét tú giác APBQ có: BH=AH,QH=PH
suy ra tứ giác APBQ là hbh
lại có: AB vuông góc vs QP tại H
suy ra tứ giác APBQ là hình thoi
sử dụng dl pytago tính đc BC=10
ta có: BP=5 cm( vì BP=CP=1/2 BC)
BH=3 cm( vì BH=AH=1/2AB)
theo đl pitago vào tam giác vuong BHP tính đc HP=4 cm
vậy PQ=8 cm( vì HP=HQ=1/2 PQ)
diện tích hình thoi APBQ là:
1/2(PQ*AB)=1/2(8*6)=24 cm^2
hok tốt