Cho tập \(X=\left\{6;7;8;9\right\}\). Gọi E là tập hợp tất cả các số tự nhiên có 2018 chữ số được lập từ các chữ số của X. Chọn ngẫu nhiên một số trong tập E. Tính xác suất để số được chọn chia hết cho 3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \({x^2} - 6 = 0 \Leftrightarrow x = \pm \sqrt 6 \in \mathbb{R}\)
Vì \(\sqrt 6 \in \mathbb{R}\) và \( -\sqrt 6 \in \mathbb{R}\) nên \( A = \left\{ { \pm \sqrt 6 } \right\}\)
Nhưng \( \pm \sqrt 6 \notin \mathbb{Z}\) nên không tồn tại \(x \in \mathbb{Z}\) để \({x^2} - 6 = 0\)
Hay \(B = \emptyset \).
a: ĐKXĐ: 2x+6>0
=>2x>-6
=>x>-2
b: ĐKXĐ: x-6>0
=>x>6
c: ĐKXĐ: \(\left\{{}\begin{matrix}\dfrac{1}{2-x}>0\\2-x\ne0\end{matrix}\right.\)
=>2-x>0
=>x<2
d: ĐKXĐ: \(\left(x-6\right)\left(x+2\right)>0\)
=>\(\left[{}\begin{matrix}x-6>0\\x+2< 0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x>6\\x< -2\end{matrix}\right.\)
\(x^4-2x^3+\left(m-14\right)x^2+\left(2m+6\right)x-3m+9=0\)
\(\Leftrightarrow x^4-2x^3-14x^2+6x+9+m\left(x^2+2x-3\right)=0\)
\(\Leftrightarrow\left(x^2+2x-3\right)\left(x^2-4x-3\right)+m\left(x^2+2x-3\right)=0\)
\(\Leftrightarrow\left(x^2+2x-3\right)\left(x^2-4x+m-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-3=0\\x^2-4x+m-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\\x^2-4x+m-3=0\left(1\right)\end{matrix}\right.\)
a/ Tập X có đúng 4 phần tử khi và chỉ khi (1) có 2 nghiệm pb khác 1 và -3
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(m-3\right)>0\\1^2-4.1+m-3\ne0\\\left(-3\right)^2-4.\left(-3\right)+m-3\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 7\\m\ne6\\m\ne-18\end{matrix}\right.\)
b/ Do (1) không thể đồng thời có 2 nghiệm \(\left\{{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) nên X có 2 phần tử khi:
TH1: \(\left(1\right)\) vô nghiệm \(\Leftrightarrow\Delta'< 0\Leftrightarrow m>7\)
TH2: (1) có nghiệm kép \(x=1\) hoặc \(x=-3\)
\(\Rightarrow\left\{{}\begin{matrix}\Delta'=0\\\left[{}\begin{matrix}-\frac{b}{2a}=1\\-\frac{b}{2a}=-3\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=7\\\left[{}\begin{matrix}2=1\\2=-3\end{matrix}\right.\end{matrix}\right.\) (ko có m thỏa mãn)
Vậy \(m>7\)
a, \(\left(x+m\right)m+x>3x+4\)
\(\Leftrightarrow mx+m^2+x>3x+4\)
\(\Leftrightarrow\left(m-2\right)x+m^2-4>0\left(1\right)\)
Nếu \(m=0,\) bất phương trình vô nghiệm
Nếu \(m>0\)
\(\left(1\right)\Leftrightarrow x>-m-2\)
\(\Rightarrow x\in\left(-m-2;+\infty\right)\)
\(\Rightarrow m>0\) thỏa mãn yêu cầu bài toán
Nếu \(m< 0\)
\(\left(1\right)\Leftrightarrow x< -m-2\)
\(\Rightarrow\) Không thỏa mãn
Vậy \(m>0\)
b, \(m\left(x-m\right)\ge x-1\)
\(\Leftrightarrow mx-m^2\ge x-1\)
\(\Leftrightarrow\left(m-1\right)x\ge m^2-1\left(1\right)\)
Nếu \(m=1,\) bất phương trình thỏa mãn
Nếu \(m>1\)
\(\left(1\right)\Leftrightarrow x\ge m+1\)
\(\Rightarrow m>1\) không thỏa mãn yêu cầu
Nếu \(m< 1\)
\(\left(1\right)\Leftrightarrow x\le m+1\)
\(\Rightarrow m< 1\) thỏa mãn yêu cầu bài toán
Vậy \(m< 1\)
\(x^2+2\left(m-3\right)x-4m+8=0\) (1)
\(\Leftrightarrow x^2-6x+8+2m\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)+2m\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4+2m\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-2m+4\end{matrix}\right.\)
Vậy \(Y=\left\{2;-2m+4\right\}\)
Xét pt \(x^2+4x-2m+10=0\left(2\right)\)
a/ Để \(X\cup Y\)có đúng 4 phần tử \(\Leftrightarrow\) (1) và (2) đều có 2 nghiệm pb và ko có nghiệm chung
\(\Leftrightarrow\left\{{}\begin{matrix}-2m+4\ne2\\\Delta'_{\left(2\right)}=4-\left(-2m+10\right)>0\\2^2+4.2-2m+10\ne0\\\left(-2m+4\right)^2+4.\left(-2m+4\right)-2m+10\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m>3\\m\ne11\\\left\{{}\begin{matrix}m\ne\frac{7}{2}\\m\ne3\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>3\\m\ne\left\{\frac{7}{2};11\right\}\end{matrix}\right.\)
b/
Để (1) và (2) có (thể có) 2 nghiệm chung
\(\Rightarrow\left\{{}\begin{matrix}2m-6=4\\-4m+8=-2m+10\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=5\\m=-1\end{matrix}\right.\) (ko tồn tại m thỏa mãn)
Vậy (1) và (2) luôn có tối đa 1 nghiệm chung
Để (2) có nghiệm \(\Rightarrow\Delta'_{\left(2\right)}\ge0\Rightarrow m\ge3\)
\(X\cap Y\) có 1 phần tử khi và chỉ khi (1) và (2) có 1 nghiệm chung \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2m+4\end{matrix}\right.\) là nghiệm của (2)
TH1: \(x=2\) là nghiệm của (2)
\(\Rightarrow2^2+4.2-2m+10=0\)
\(\Leftrightarrow m=11\)
TH2: \(x=-2m+4\) là nghiệm của (2)
\(\Leftrightarrow\left(-2m+4\right)^2+4\left(-2m+4\right)-2m+10=0\)
\(\Leftrightarrow4m^2-26m+42=0\Leftrightarrow\left[{}\begin{matrix}m=3\\m=\frac{7}{2}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}m=11\\m=3\\m=\frac{7}{2}\end{matrix}\right.\)
a) x \(\in\) {2;1;0; -1; -2}
b) x \(\in\) {...; -10; -9; 9;10;...}
c) x \(\in\) {-1; -2; -3; -4; 0; 1; 2;3;4}
d) x \(\in\) {...; -9; -8; -7; 7;8;9;...}
a. Ta có: |x| < 3 ⇔ -3 < x < 3
Các giá trị trong tập hợp A là nghiệm của bất phương trình là:
-2; -1; 0; 1; 2
b. Ta có: |x| > 8 ⇔ x > 8 hoặc x < -8
Các giá trị trong tập hợp A là nghiệm của bất phương trình là:
-10; -9; 9; 10
c. Ta có: |x| ≤ 4 ⇔ -4 ≤ x ≤ 4
Các số trong tập hợp A là nghiệm của bất phương trình là:
-4; -3; -2; -1; 0; 1; 2; 3; 4
d. Ta có: |x| ≥ 7 ⇔ x ≥ 7 hoặc x ≤ -7
Các số trong tập hợp A là nghiệm của bất phương trình là:
-10; -9; -8; -7; 7; 8; 9; 10
Ta có: \(A = \left\{ {x \in \mathbb{Z}| - 2 \le x \le 3} \right\} = \{ - 2; - 1;0;1;2;3\} \)
Và \(B = \{ x \in \mathbb{R}|{x^2} - x - 6 = 0\} = \{ - 2;3\} \)
Khi đó:
Tập hợp \(A\,{\rm{\backslash }}\,B\) gồm các phần tử thuộc A mà không thuộc B. Vậy\(A\,{\rm{\backslash }}\,B = \{ - 1;0;1;2\} \).
Tập hợp \(B\,{\rm{\backslash }}\,A\) gồm các phần tử thuộc B mà không thuộc A. Vậy \(B\,{\rm{\backslash }}\,A = \emptyset \)
có đáp án cho câu này chưa ạ