Tìm các đa thức f(x) và g(x) biết:
f(x) + g(x) = 5x2 - 2x + 3
f(x) - g(x) = x2 - 2x + 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,f\left(x\right)+g\left(x\right)=5x^2-2x+5+5x^2-6x-\dfrac{1}{3}\\ =10x^2-8x+\dfrac{14}{3}\\ b,f\left(x\right)-g\left(x\right)=5x^2-2x+5-5x^2+6x+\dfrac{1}{3}\\ =4x+\dfrac{16}{3}\\ c,f\left(x\right)-g\left(x\right)=4x+\dfrac{16}{3}=0\\ \Leftrightarrow4x=-\dfrac{16}{3}\Leftrightarrow x=-\dfrac{4}{3}\)
a) f(x) + g(x) = \(5x^2-2x+5+5x^2-6x-\dfrac{1}{3}=10x^2-8x+\dfrac{14}{3}\)
b) f(x) - g(x) = \(5x^2-2x+5-5x^2+6x+\dfrac{1}{3}=4x+\dfrac{16}{3}\)
c) Ngiệm của f(x) - g(x) chính là nghiệm của \(4x+\dfrac{16}{3}\)
Ta có: \(4x+\dfrac{16}{3}=0\Leftrightarrow4x=-\dfrac{16}{3}\Leftrightarrow x=-\dfrac{4}{3}\)
Vậy nghiệm của f(x) - g(x) là \(-\dfrac{4}{3}\)
a: f(x)=3x^4+2x^3+6x^2-x+2
g(x)=-3x^4-2x^3-5x^2+x-6
b: H(x)=f(x)+g(x)
=3x^4+2x^3+6x^2-x+2-3x^4-2x^3-5x^2+x-6
=x^2-4
f(x)-g(x)
=3x^4+2x^3+6x^2-x+2+3x^4+2x^3+5x^2-x+6
=6x^4+4x^3+11x^2-2x+8
c: H(x)=0
=>x^2-4=0
=>x=2 hoặc x=-2
a: \(F\left(x\right)=x^5-3x^2+x^3-x^2-2x+5\)
\(=x^5+x^3-4x^2-2x+5\)
\(G\left(x\right)=x^5-x^4+x^2-3x+x^2+1\)
\(=x^5-x^4+2x^2-3x+1\)
b: Ta có: \(H\left(x\right)=F\left(x\right)+G\left(x\right)\)
\(=x^5+x^3-4x^2-2x+5+x^5-x^4+2x^2-3x+1\)
\(=2x^5-x^4+x^3-2x^2-5x+6\)
`a)f(x)+g(x)`
`=x^2+3x-5+x^2+2x+3`
`=(x^2+x^2)+(3x+2x)+(3-5)`
`=2x^2+5x-2`
`b)f(x)-g(x)`
`=x^2+3x-5-(x^2+2x+3)`
`=(x^2-x^2)+(3x-2x)-(3+5)`
`=x-8`
a: f(x)=x^3-2x^2+2x-5
g(x)=-x^3+3x^2-2x+4
b: Sửa đề: h(x)=f(x)+g(x)
h(x)=x^3-2x^2+2x-5-x^3+3x^2-2x+4=x^2-1
c: h(x)=0
=>x^2-1=0
=>x=1 hoặc x=-1
thử làm:))
\(\hept{\begin{cases}f\left(x\right)+g\left(x\right)=5x^2-2x+3\\f\left(x\right)-g\left(x\right)=x^2-2x+5\end{cases}}\)
\(\Rightarrow f\left(x\right)+g\left(x\right)+f\left(x\right)-g\left(x\right)=\left(5x^2-2x+3\right)+\left(x^2-2x+5\right)\)
\(\Rightarrow2\cdot f\left(x\right)=6x^2-4x+8\)
\(\Rightarrow f\left(x\right)=3x^2-2x+4\)
\(\Rightarrow\hept{\begin{cases}3x^2-2x+4+g\left(x\right)=5x^2-2x+3\\3x^2-2x+4-g\left(x\right)=x^2-2x+5\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}g\left(x\right)=2x^2-1\\g\left(x\right)=2x^2-1\end{cases}}\)
Vậy ...