K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 8 2021

Lời giải:

a.

\(|\overrightarrow{MC}|=|\overrightarrow{MA}-\overrightarrow{MB}|=|\overrightarrow{BA|}\)

Tập hợp điểm $M$ thuộc đường tròn tâm $C$ đường bán kính $AB$

b. Gọi $I$ là trung điểm $AB$. Khi đó:

\(|\overrightarrow{MA}+\overrightarrow{MB}|=|\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{MI}+\overrightarrow{IB}|\)

\(=|2\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{IB}|=|2\overrightarrow{MI}|=0\)

\(\Leftrightarrow |\overrightarrow{MI}|=0\Leftrightarrow M\equiv I\)

Vậy điểm $M$ là trung điểm của $AB$

 

 

AH
Akai Haruma
Giáo viên
14 tháng 8 2021

c.

Trên tia đối của tia $CA$ lấy $K$ sao cho $KC=\frac{1}{3}CA$

\(|\overrightarrow{MA}|=2|\overrightarrow{MC}|\Leftrightarrow |\overrightarrow{MK}+\overrightarrow{KA}|=2|\overrightarrow{MK}+\overrightarrow{KC}|\)

\(\Leftrightarrow |\overrightarrow{MK}+4\overrightarrow{KC}|=|2\overrightarrow{MK}+2\overrightarrow{KC}|\)

\(\Leftrightarrow (\overrightarrow{MK}+4\overrightarrow{KC})^2=(2\overrightarrow{MK}+2\overrightarrow{KC})^2\)

\(\Leftrightarrow MK^2+16KC^2=4MK^2+4KC^2\)

\(\Leftrightarrow 12KC^2=3MK^2\Leftrightarrow MK=2KC=\frac{2}{3}AC\)

Vậy $M$ thuộc đường tròn tâm $K$ bán kính $\frac{2}{3}AC$

 

20 tháng 9 2023

\(\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{MC}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{MA}-\overrightarrow{MC}=-\overrightarrow{MB}\Leftrightarrow\overrightarrow{CA}=\overrightarrow{BM}\)

Vậy M là điểm sao cho tứ giác ACBM là hình bình hành.

6 tháng 2 2020

một đường tròn

\(\Leftrightarrow\overrightarrow{MA}\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)=\overrightarrow{0}\)

=>vecto MA=0 hoặc M là trọng tâm của ΔABC

=>M là trọng tâm của ΔABC hoặc M trùng với A

12 tháng 1 2021

Gọi G là trọng tâm ΔABC

⇒ VT = 6MG

VP  = \(\left|2\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)+\overrightarrow{MC}-\overrightarrow{MA}\right|\)

VP = \(\left|6\overrightarrow{MG}+\overrightarrow{AC}\right|\)

Xác định điểm I sao cho \(6\overrightarrow{IG}+\overrightarrow{AC}=\overrightarrow{0}\) (cái này chắc bạn làm được)

VP = \(\left|6\overrightarrow{MI}+6\overrightarrow{IG}+\overrightarrow{AC}\right|\)

VP = 6 MI

Khi VT = VP thì MG = MI

⇒ M nằm trên đường trung trực của IG

Tập hợp các điểm M : "Đường trung trực của IG"

5 tháng 12 2023

Gọi G là trọng tâm của tam giác ABC, I là trung điểm BC.

Dễ dàng chứng minh \(\left\{{}\begin{matrix}\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG}\right|=3MG\\\dfrac{3}{2}\left|\overrightarrow{MB}+\overrightarrow{MC}\right|=\dfrac{3}{2}\left|2\overrightarrow{MI}\right|=3MI\end{matrix}\right.\)

Kết hợp điều kiện đề bài, ta có \(MG=MI\). Do đó M nằm trên đường trung trực của GI (cố định).

Vậy tập hợp điểm M thoả điều kiện đề bài là trung trực của đoạn GI.

NV
21 tháng 9 2020

\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{CM}\right|=\left|\overrightarrow{MA}+\overrightarrow{BM}+\overrightarrow{MC}\right|\)

\(\Leftrightarrow\left|\overrightarrow{MA}+\overrightarrow{CB}\right|=\left|\overrightarrow{MA}+\overrightarrow{BC}\right|\)

\(\Leftrightarrow MA^2+BC^2+2\overrightarrow{MA}.\overrightarrow{CB}=MA^2+BC^2+2\overrightarrow{MA}.\overrightarrow{BC}\)

\(\Leftrightarrow\overrightarrow{MA}.\overrightarrow{BC}+\overrightarrow{MA}.\overrightarrow{BC}=0\)

\(\Leftrightarrow\overrightarrow{MA}.\overrightarrow{BC}=0\Leftrightarrow AM\perp BC\)

Tập hợp M là đường thẳng qua A vuông góc BC