\(\left\{{}\begin{matrix}\dfrac{xy}{x+y}=2\\\dfrac{yz}{y+z}=4\\\dfrac{zx}{z+x}=3\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hpt \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{1}{2}\\\dfrac{y+z}{yz}=\dfrac{1}{4}\\\dfrac{z+x}{xz}=\dfrac{1}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{4}\\\dfrac{1}{x}+\dfrac{1}{z}=\dfrac{1}{3}\end{matrix}\right.\) ( đk : x , y , z # 0 )
Cộng từng vế của các pt lại với nhau , ta có :
\(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{13}{12}\)
\(\Leftrightarrow\dfrac{1}{x}=\dfrac{13}{24}-\left(\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{13}{24}-\dfrac{1}{4}=\dfrac{7}{24}\)
\(\Leftrightarrow x=\dfrac{24}{7}\left(tm\right)\)
\(\Rightarrow y=\dfrac{24}{5}\left(tm\right);z=8\left(tm\right)\)
\(A\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{1}{2}\left(x+y+z\right)\ge\dfrac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=\dfrac{1}{2}\)
\(A_{min}=\dfrac{1}{2}\) khi \(x=y=z=\dfrac{1}{3}\)
1. Với mọi số thực x;y;z ta có:
\(x^2+y^2+z^2+\dfrac{1}{2}\left(x^2+1\right)+\dfrac{1}{2}\left(y^2+1\right)+\dfrac{1}{2}\left(z^2+1\right)\ge xy+yz+zx+x+y+z\)
\(\Leftrightarrow\dfrac{3}{2}P+\dfrac{3}{2}\ge6\)
\(\Rightarrow P\ge3\)
\(P_{min}=3\) khi \(x=y=z=1\)
1.1
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}=a>0\\\dfrac{1}{\sqrt{y}}=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+\sqrt{2-b^2}=2\\b+\sqrt{2-a^2}=2\end{matrix}\right.\)
\(\Rightarrow a-b+\sqrt{2-b^2}-\sqrt{2-a^2}=0\)
\(\Leftrightarrow a-b+\dfrac{\left(a-b\right)\left(a+b\right)}{\sqrt{2-b^2}+\sqrt{2-a^2}}=0\)
\(\Leftrightarrow a=b\Leftrightarrow x=y\)
Thay vào pt đầu:
\(a+\sqrt{2-a^2}=2\Rightarrow\sqrt{2-a^2}=2-a\) (\(a\le2\))
\(\Leftrightarrow2-a^2=4-4a+a^2\Leftrightarrow2a^2-4a+2=0\)
\(\Rightarrow a=1\Rightarrow x=y=1\)
2.
\(\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+y^2\right)^2-x^2y^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\x^2-xy+y^2=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x^2+3xy+3y^2=21\\7x^2-7xy+7y^2=21\end{matrix}\right.\)
\(\Rightarrow4x^2-10xy+4y^2=0\)
\(\Leftrightarrow2\left(2x-y\right)\left(x-2y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=2x\\y=\dfrac{1}{2}x\end{matrix}\right.\)
Thế vào pt đầu
...
\(\left\{{}\begin{matrix}\dfrac{xy}{x+y}=\dfrac{12}{5}\\\dfrac{yz}{y+z}=\dfrac{18}{5}\\\dfrac{zx}{z+x}=\dfrac{36}{13}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{5}{12}\\\dfrac{y+z}{yz}=\dfrac{5}{18}\\\dfrac{z+x}{zx}=\dfrac{13}{36}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{12}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{5}{18}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{13}{36}\end{matrix}\right.\)
Cộng vế theo vế ta thu được :
\(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{19}{18}\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{19}{36}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{4}\\\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{1}{z}=\dfrac{1}{9}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\y=6\\z=9\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(4;6;9\right)\)
ĐK:: x,y,z\(\ne0\)
\(\left\{{}\begin{matrix}x+y+z=9\\\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\\xy+yz+zx=27\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+y+z=9\\xy+yz+zx=xyz\\xy+xz+yz=27\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+y+z=9\\xyz=27\\xy+yz+xz=27\end{matrix}\right.\)
Coi x;y;z là ba nghiệm x1;x2;x3 của một phương trình bậc ba. Theo công thức Vi-ét ta có: \(\left\{{}\begin{matrix}x_1+x_2+x_3=9\\x_1x_2+x_2x_3+x_3x_1=27\\x_1x_2x_3=27\end{matrix}\right.\)
Suy ra x1;x2;x3 là ba nghiệm của phương trình
\(X^3-9X^2+27X-27=0\Leftrightarrow\left(X-3\right)^3=0\Leftrightarrow X=3\)
Vậy (x;y;z)=(3;3;3)
https://olm.vn/hoi-dap/detail/227981379332.html
Bạn tham khảo ở đây nhé.
Lời giải:
Từ đề bài ta dễ dàng suy ra \(x,y,z\neq 0\)
Đảo lại ta thu được hệ:
\(\left\{\begin{matrix} \frac{x+y}{xy}=\frac{1}{2}\\ \frac{y+z}{yz}=\frac{1}{4}\\ \frac{x+z}{xz}=\frac{1}{3}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{1}{x}+\frac{1}{y}=\frac{1}{2}(1)\\ \frac{1}{y}+\frac{1}{z}=\frac{1}{4}(2)\\ \frac{1}{x}+\frac{1}{z}=\frac{1}{3}(3)\end{matrix}\right.\)
Lấy \(\frac{(1)+(2)+(3)}{2}\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{\frac{1}{2}+\frac{1}{4}+\frac{1}{3}}{2}=\frac{13}{24}(4)\)
Lấy \((4)-(1)\Rightarrow \frac{1}{z}=\frac{13}{24}-\frac{1}{2}=\frac{1}{24}\Rightarrow z=24\)
Lấy \((4)-(2)\Rightarrow \frac{1}{x}=\frac{13}{24}-\frac{1}{4}=\frac{7}{24}\Rightarrow x=\frac{24}{7}\)
Lấy \((4)-(3)\Rightarrow \frac{1}{y}=\frac{13}{24}-\frac{1}{3}=\frac{5}{24}\Rightarrow y=\frac{24}{5}\)
Vậy \((x,y,z)=(\frac{24}{7}, \frac{24}{5}, 24)\)