cho tam giác ABC có góc A = 60o, tia phân giác của góc B cắt AC tại H.tia phân giác của góc C cắt AB tại K
a. tính góc BIC
b. kẻ IM, IN , IP lần lượt vuông góc với AC , BC, AB . CMR IM = IN = IP
c. CMR IH = IK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCMI vuông tại M và ΔCNI vuông tại N có
CI chung
góc MCI=góc NCI
=>ΔCMI=ΔCNI
=>IM=IN
b: Xét ΔBMI vuông tại M và ΔBPI vuông tại P có
BI chung
góc MBI=góc PBI
=>ΔBMI=ΔPBI
=>IM=IP
c: IM=IP
IM=IN
=>IN=IP
Sửa đề: Vuông góc với AC,AP tại N,P
a: Xét ΔBPI vuông tại P và ΔBMI vuông tại M có
BI chung
\(\widehat{PBI}=\widehat{MBI}\)
Do đó: ΔBPI=ΔBMI
=>BP=BM
b: Xét ΔIMC vuông tại M và ΔINC vuông tại N có
CI chung
\(\widehat{MCI}=\widehat{NCI}\)
Do đó: ΔIMC=ΔINC
=>IM=IN
c: ΔMCI=ΔNCI
=>MC=CN
BP+CN
=BM+MC
=BC
d: ΔBPI=ΔBMI
=>IP=IM
mà IM=IN
nên IP=IN
Xét ΔAPI vuông tại P và ΔANI vuông tại N có
AI chung
IP=IN
Do đó: ΔAPI=ΔANI
=>\(\widehat{PAI}=\widehat{NAI}\)
=>AI là phân giác của \(\widehat{BAC}\)
a) chứng minh: tam giác ABD= tam giác ACD xét tam giác ABD và tam giác ACD có: AB=AC( giả thuyết) AD: cạnh chung Góc BDA=Góc ADC = 90 độ suy ra: tam giác ABD = tam giác ACD (c.g.c)
\(a,\left\{{}\begin{matrix}AB=AC\\\widehat{BAD}=\widehat{CAD}\\AD\text{ chung}\end{matrix}\right.\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\\ b,\left\{{}\begin{matrix}\widehat{IAD}=\widehat{CAD}\\\widehat{DIA}=\widehat{DKC}=90^0\\AD\text{ chung}\end{matrix}\right.\Rightarrow\Delta AID=\Delta AKD\left(ch-gn\right)\\ \Rightarrow DI=DK;\widehat{IDA}=\widehat{KDA}\\ \text{Mà }\widehat{ADB}=\widehat{ADC}\\ \Rightarrow\widehat{ADB}-\widehat{IDA}=\widehat{ADC}-\widehat{KDA}\\ \Rightarrow\widehat{IDB}=\widehat{KDC}\\ c,AI=AK\\ \Rightarrow\Delta AIK\text{ cân tại }A\\ \Rightarrow\widehat{AIK}=\dfrac{180^0-\widehat{A}}{2}\\ \Delta ABC\text{ cân tại A}\\ \Rightarrow\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\\ \Rightarrow\widehat{AIK}=\widehat{ABC}\)
Mà 2 góc này ở vị trí đồng vị nên IK//BC