Tìm b ∈ ℤ sao cho:
b - 1 là ước số của 7b + 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b= [ -25 , 9]
vì -25 + 8=-17
9+8=17
-17[ số nguyên tố k đi nhóe
7b - 41 là bội cua b - 5
7b - 35 - 6 là bội cuarb -5
6 là b của b - 5
b - 5 thuộc U(6) = {-6;-3;-2;-1;1;2;3;6}
b thuộc {-1 ; 2 ; 3 ; 4 ; 6 ; 7 ; 8 ; 11}
\(7b+2=7b-14+16=7\left(b-2\right)+16\)
Để \(7b+2⋮b-2\Leftrightarrow7\left(b-2\right)+16⋮b-2\Leftrightarrow16⋮b-2\Rightarrow b-2\in\left\{-16;-8;-4;-2;-1;1;2;4;8;16\right\}\Rightarrow b\in\left\{-14;-6;-2;0;1;3;4;6;10;18\right\}\)
Ta có: \(7b+2⋮b-2\)
\(\Leftrightarrow7b-14+16⋮b-2\)
mà \(7b-14⋮b-2\)
nên \(16⋮b-2\)
\(\Leftrightarrow b-2\inƯ\left(16\right)\)
\(\Leftrightarrow b-2\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
hay \(b\in\left\{3;1;4;0;6;-2;10;-6;18;-14\right\}\)
Vậy: \(b\in\left\{3;1;4;0;6;-2;10;-6;18;-14\right\}\)
\(3n-4⋮n-5\Leftrightarrow3\left(n-5\right)+11⋮n-5\)
\(\Leftrightarrow11⋮n-5\Rightarrow n-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
n - 5 | 1 | -1 | 11 | -11 |
n | 6 | 4 | 16 | -6 |
Ta có: \(5b-23⋮b-6\)
\(\Leftrightarrow5b-30+7⋮b-6\)
mà \(5b-30⋮b-6\)
nên \(7⋮b-6\)
\(\Leftrightarrow b-6\inƯ\left(7\right)\)
\(\Leftrightarrow b-6\in\left\{1;-1;7;-7\right\}\)
hay \(b\in\left\{7;5;13;-1\right\}\)
Vậy: \(b\in\left\{7;5;13;-1\right\}\)
b + 3 là ước số của 6b + 31
\(\Rightarrow6b+31⋮b+3\)
\(\Rightarrow6\left(b+3\right)+13⋮b+3\)
\(\Rightarrow13⋮b+3\)
\(\Rightarrow b+3\in\left\{13,1,-13,-1\right\}\)
\(\Rightarrow b\in\left\{10,-2,-16,-4\right\}\)
\(7b+5⋮b-1\)
\(\Rightarrow7\left(b-1\right)+12⋮b-1\)
\(\Rightarrow12⋮b-1\)
\(\Rightarrow b-1\in\left\{12;1;3;4;-12;-1;-3;-4\right\}\)
\(\Rightarrow b\in\left\{13;2;4;5;-11;0;-2;-3\right\}\)
Ta có:b-1 chia hết b-1=>7(b-1) chia hết b-1=>7b-1 chia hết cho b-1
7b+5 chia hết cho b-1=> 7b+5-(7b-1) chia hết cho b-1
7b+5-7b+1 chia hết cho b-1
5 +1 chia hết cho b-1
6 chia hết cho b-1
6 chia hết cho b-1=>b-1 \(\in\)Ư(6)
Ư(6)={1;-1;2;-2;3;-3;6;-6}
=> b-1=1
b =1+1
b =2
=>....
Tương tự!