Giải phương trình: -2sin3x-6cos3x+cosx+3sinx=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sin2x-cos2x+3sinx-cosx-1=0\)
\(\Leftrightarrow2sinxcosx-\left(1-2sin^2x\right)+3sinx-cosx-1=0\)
\(\Leftrightarrow2sinxcosx-1+2sin^2x+3sinx-cosx-1=0\)
\(\Leftrightarrow2sin^2x+3sinx-2+cosx\left(2sinx-1\right)=0\)
\(\Leftrightarrow2\left(sinx-\dfrac{1}{2}\right)\left(sinx+2\right)+cosx\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(sinx+2\right)+cosx\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(sinx+2+cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2sinx-1=0\\sinx+cosx+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\sinx+cosx=-2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}sinx=sin\dfrac{\pi}{6}\\\sqrt[]{2}\left(sinx.\dfrac{1}{\sqrt[]{2}}+cosx.\dfrac{1}{\sqrt[]{2}}\right)=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\\\sqrt[]{2}sin\left(x+\dfrac{\pi}{4}\right)=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\\sin\left(x+\dfrac{\pi}{4}\right)=-\sqrt[]{2}\left(vô.lý\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\) \(\left(k\in Z\right)\)
Đặt \(tan\dfrac{x}{2}=t\) ta được:
\(\dfrac{6t}{1+t^2}+\dfrac{1-t^2}{1+t^2}-4t+1=0\)
\(\Leftrightarrow-2t^3+t+1=0\)
\(\Leftrightarrow\left(t-1\right)\left(2t^2+2t+1\right)=0\)
\(\Leftrightarrow t=1\)
\(\Leftrightarrow tan\dfrac{x}{2}=1\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{\pi}{4}+k\pi\)
\(\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)
\(\Leftrightarrow\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx=sin3x\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{3}\right)=sin3x\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=x+\dfrac{\pi}{3}+k2\pi\\3x=\dfrac{2\pi}{3}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k\pi\\x=\dfrac{\pi}{6}+\dfrac{k\pi}{2}\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{\pi}{6}+\dfrac{k\pi}{2}\)
a) <=> 4sinxcosx -(2cos2x-1)=7sinx+2cosx-4
<=> 2cos2x+(2-4sinx)cosx+7sinx-5=0
- sinx=1 => 2cos2x-2cosx+2=0
pt trên vn
b) <=> 2sinxcosx-1+2sin2x+3sinx-cosx-1=0
<=> cos(2sinx-1)+2sin2x+3sinx-2=0
<=> cosx(2sinx-1)+(2sinx-1)(sinx+2)=0
<=> (2sinx-1)(cosx+sinx+2)=0
<=> sinx=1/2 hoặc cosx+sinx=-2(vn)
<=> x= \(\frac{\pi}{6}+k2\pi\) hoặc \(x=\frac{5\pi}{6}+k2\pi\left(k\in Z\right)\)
TH1 cosx=0 \(\Leftrightarrow1=0\left(vl\right)\)
TH2 \(cosx\ne0\) chia 2 vế cho \(cos^3x\)
\(\Leftrightarrow-2tan^3x-6+1+tân^2x+3tanx\left(1+tan^2x\right)=0\)
\(\Leftrightarrow tan^3x+tan^2x+3tanx-5=0\)
\(\Leftrightarrow\left(tanx-1\right)\left(tan^2x+2tanx+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tan^2x+2tanx+5=0\left(VN\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\left(k\in Z\right)\)