Tìm số dư khi chia \(\left(n^3-1\right)^{111}.\left(n^2-1\right)^{333}\)cho n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
10^n có tổng các chữ số là 1
5^3 có tổng các chữ số là 8
=>10^n+5^3 có tổng các chữ số là 9
=>10^n+5^3 chia hết cho 9
ta có n3\(\equiv\)0(mod n)
=> n3-1\(\equiv\)-1(mod n)
=>( n3-1)111\(\equiv\)-1(mod n)
Ta lại có
n2\(\equiv\)0(mod n)
=> n2-1\(\equiv\)-1(mod n)
=>( n2-1)333\(\equiv\)-1(mod n)
vậy số dư khi chia (n3-1)111.( n2-1)333 cho n là 1
d) Ta có: \(n^2+5n+9⋮n+3\)
\(\Leftrightarrow n^2+3n+2n+6+3⋮n+3\)
\(\Leftrightarrow n\left(n+3\right)+2\left(n+3\right)+3⋮n+3\)
mà \(n\left(n+3\right)+2\left(n+3\right)⋮n+3\)
nên \(3⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(3\right)\)
\(\Leftrightarrow n+3\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{-2;-4;0;-6\right\}\)
Vậy: \(n\in\left\{-2;-4;0;-6\right\}\)
d) Ta có: n2+5n+9⋮n+3n2+5n+9⋮n+3
⇔n2+3n+2n+6+3⋮n+3⇔n2+3n+2n+6+3⋮n+3
⇔n(n+3)+2(n+3)+3⋮n+3⇔n(n+3)+2(n+3)+3⋮n+3
mà n(n+3)+2(n+3)⋮n+3n(n+3)+2(n+3)⋮n+3
nên 3⋮n+33⋮n+3
⇔n+3∈Ư(3)⇔n+3∈Ư(3)
⇔n+3∈{1;−1;3;−3}
\(\left(n^3-1\right)^{111}.n.\left(n^2-1\right)^{333}\) chia hết cho n ( tức là dư 0 )
Vì mấy nhân cho n đều chia hết cho n
cảm ơn nha, nhưng mk vt sai đề:( n3-1)111.(n2-1)333 ms đúng
Bài 2:Tìm x biết
(4x+3)3+(5−7x)3+(3x−8)3=0\" id=\"MathJax-Element-4-Frame\">\\(\\left(4x+3\\right)^3+\\left(5-7x\\right)^3+\\left(3x-8\\right)^3=0\\)
\\(\\Leftrightarrow\\left[\\left(4x\\right)^3+3.\\left(4x\\right)^2.3+3.4x.3^2+3^3\\right]+\\left[5^3-3.5^2.7x+3.5.\\left(7x\\right)^2-\\left(7x\\right)^3\\right]+\\left[\\left(3x\\right)^3-3.\\left(3x\\right)^2.8+3.3x.8^2-8^3\\right]=0\\)
\\(\\Leftrightarrow64x^3+144x^2+108x+27+125-525x+735x^2-343x^3+27x^3-216x^2+576x-512=0\\)
\\(\\Leftrightarrow-252x^3+663x^2+159x-360=0\\)
\\(\\Leftrightarrow3\\left(-84x^3+221x^2+53x-120\\right)=0\\)
\(\hept{\begin{cases}n^3-1\equiv-1\left(mod\text{ }n\right)\\n^2-1\equiv-1\left(mod\text{ }n\right)\end{cases}}\Rightarrow\left(n^3-1\right)^{111}.\left(n^2-1\right)^{333}\equiv\left(-1\right)^{111}.\left(-1\right)^{333}\equiv\left(-1\right).\left(-1\right)\equiv1\)\(\left(mod\text{ }n\right)\)
ahihi