OLM cung cấp gói bải giảng điện tử PPT cho giáo viên đầu năm học
Thi thử và xem hướng dẫn giải chi tiết đề tham khảo 12 môn thi Tốt nghiệp THPT 2025
Tham gia cuộc thi "Nhà giáo sáng tạo" ẫm giải thưởng với tổng giá trị lên đến 10 triệu VNĐ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho ba số thực dương a, b,c biết abc=1 .Cm D\(\ge\) 1 với
D= \(\dfrac{a}{a+2b}+\dfrac{b}{b+2c}+\dfrac{c}{c+2a}\)
Áp dụng BĐT Cauchy cho 3 số dương a , b , c , ta có :
\(D=\dfrac{a}{a+2b}+\dfrac{b}{b+2c}+\dfrac{c}{c+2a}=\dfrac{a^2}{a^2+2ab}+\dfrac{b^2}{b^2+2bc}+\dfrac{c^2}{c^2+2ac}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ac}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
với a,b,c là các số thực dương thỏa mãn a+b+c+1=4abc.CMR\(\dfrac{a^2b}{b+2c}+\dfrac{b^2c}{c+2a}+\dfrac{c^2a}{a+2b}\)
với a,b,c là các số thực dương thỏa mãn a+b+c+1=4abc.CMR\(\dfrac{a^2b}{b+2c}+\dfrac{b^2c}{c+2a}+\dfrac{c^2a}{a+2b}\ge1\)
Cho ba số thực dương a,b,c thỏa mãn abc = 1
Chứng minh rằng : \(\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2c^2+3}+\dfrac{1}{c^2+2a^2+3}\) ≤ \(\dfrac{1}{2}\)
\(Áp\ dụng\ BĐT\ AM - GM,\ ta\ có: \\\sum\dfrac{1}{a^2+2b^2+3}=\sum\dfrac{1}{(a^2+b^2)+(b^2+1)+2}\le\sum\dfrac{1}{2ab+2b+2} \\=\dfrac{1}{2}\sum\dfrac{1}{ab+b+1}=\dfrac{1}{2}.1=\dfrac{1}{2} \\Đẳng\ thức\ xảy\ ra\ khi\ a=b=c=1.\)
cho a,b,c là các số thực dương thỏa mãn a+b+c+1=4abc.CMR\(\dfrac{a^2b}{b+2c}+\dfrac{b^2c}{c+2a}+\dfrac{c^2a}{a+2b}\)
cho a,b,c là các số thực dương thỏa mãn a+b+c+1=4abc.CMR\(\dfrac{a^2b}{b+2c}+\dfrac{b^2c}{c+2a}+\dfrac{c^2a}{a+2b}\ge1\)Mọi người giúp em với ạ
cho a,b,c là các số thực dương thỏa mãn a+b+c+1=4abc.CMR\(\dfrac{a^2b}{b+2c}+\dfrac{b^2c}{c+2a}+\dfrac{c^2a}{a+2b}\ge1\)
cho a,b,c là các số thực dương thỏa mãn a+b+c+1=4abc.\(\dfrac{a^2b}{b+2c}+\dfrac{b^2c}{c+2a}+\dfrac{c^2a}{a+2b}\ge1\)
cho a,b,c là các số thực dương thỏa mãn \(a+b+c+1=4abc\).CMR\(\dfrac{a^2b}{b+2c}+\dfrac{b^2c}{c+2a}+\dfrac{c^2a}{a+2b}\ge1\)
cho a,b,c là các số thực dương thỏa mãn a+b+c+1=4abc.CMR \(\dfrac{a^2b}{b+2c}+\dfrac{b^2c}{c+2a}+\dfrac{c^2a}{a+2b}\ge1\)MN giúp em với em cảm ơn ạ !!!
CMR gì bạn?
Đề không hiện
Áp dụng BĐT Cauchy cho 3 số dương a , b , c , ta có :
\(D=\dfrac{a}{a+2b}+\dfrac{b}{b+2c}+\dfrac{c}{c+2a}=\dfrac{a^2}{a^2+2ab}+\dfrac{b^2}{b^2+2bc}+\dfrac{c^2}{c^2+2ac}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ac}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)