K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2019

Tứ giác AFHE có: \(\widehat{AFH}=\widehat{AEH}=90^0\Rightarrow\widehat{A}+\widehat{FHE}=180^0\)

Mà \(\widehat{FHE}=\widehat{BHC}\) (đối đỉnh) và \(\widehat{BHC}=\widehat{D}\) (vì BHCD là hình bình hành)

Do đó: \(\widehat{A}+\widehat{D}=180^0\)

Vậy tứ giác ABDC nội tiếp.

a) Xét tứ giác AEHF có 

\(\widehat{HFA}\) và \(\widehat{HEA}\) là hai góc đối

\(\widehat{HFA}+\widehat{HEA}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

30 tháng 7 2021

22 tháng 11 2022

a: Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>BD//CH

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>CD//BH

Xét tứ giác BHCD có

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

b: BHCD là hình bình hành

nên BC cắt HD tại trung điểm của mỗi đường

=>I là trung điểm của HD

Xét ΔDAH có DI/DH=DO/DA

nen Io//AH và IO=AH/2

=>AH=2OI

c: G là trọng tâm

nên AG=2AI

Xét ΔAHD có

AI là trung tuyến

AG=2/3AI

DO đó: G là trọng tâm

26 tháng 4 2023

giải thích rõ hơn câu c dùm mk dc không ạ

 

9 tháng 10 2023

hello

a) Xét ΔABC có 

BE là đường cao ứng với cạnh AC

CF là đường cao ứng với cạnh AB

BE cắt CF tại H

Do đó: H là trực tâm của ΔABC

Suy ra: AH\(\perp\)BC

Xét tứ giác BHCD có 

BH//CD

HC//BD

Do đó: BHCD là hình bình hành

b) Ta có: BHCD là hình bình hành(cmt)

nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HD

Ta có: ΔFBC vuông tại F(gt)

mà FM là đường trung tuyến ứng với cạnh huyền BC(gt)

nên \(FM=\dfrac{BC}{2}\)(1)

Ta có: ΔEBC vuông tại E(gt)

mà EM là đường trung tuyến ứng với cạnh huyền BC(gt)

nên \(EM=\dfrac{BC}{2}\)(2)

Từ (1) và (2) suy ra MF=ME

hay ΔEMF cân tại M(đpcm)