Cho A = \(\frac{9}{5^2}+\frac{9}{11^2}+\frac{9}{17^2}+.......+\frac{9}{409^2}\)
CMR A<\(\frac{1}{12}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
9/5^2<9/2.8
9/11^2<9/8.14
............
9/305^2<9/302.308
=>B<9/2.8+9/8.14+......+9/302.308
=9/6(1/2-1/8+1/8-1/14+..........+1/302-1/308
=3/2(1/2-1/308)<3/2.1/2=3/4(đpcm)
a,\(=\frac{-5}{9}+\frac{8}{15}+\frac{-2}{11}+\frac{-4}{9}+\frac{7}{15}\)
\(\left(\frac{-5}{9}+\frac{-4}{9}\right)+\left(\frac{8}{15}+\frac{7}{15}\right)+\frac{-2}{11}\)
=-1+1+-2/11
=0+-2/11
=-2/11
b,\(=\left(\frac{5}{13}+\frac{8}{13}\right)+\left(\frac{-20}{41}+\frac{-21}{40}\right)+\frac{-5}{17}\)
=1+-1+-5/17
=0+-5/17
=-5/17
c,\(=\left(\frac{1}{5}+\frac{4}{5}\right)+\left(\frac{-2}{9}+-\frac{7}{9}\right)+\frac{16}{17}\)
=1+-1+16/17
=0+16/17
=16/17
d,\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{3}-\frac{1}{101}=\frac{98}{303}\)
a.\(\frac{-5}{9}\)+\(\frac{8}{15}\)+\(\frac{-2}{11}\)+\(\frac{4}{-9}\)+\(\frac{7}{15}\)
=\(\frac{-5}{9}\)+\(\frac{4}{-9}\)+\(\frac{8}{15}\)+\(\frac{7}{15}\)+\(\frac{-2}{11}\)
=(\(\frac{-5}{9}\)+\(\frac{-4}{9}\))+(\(\frac{8}{15}\)+\(\frac{7}{15}\))+\(\frac{-2}{11}\)
=(-1)+1+\(\frac{-2}{11}\)
=0+\(\frac{-2}{11}\)
=\(\frac{-2}{11}\).
1. \(\frac{5}{9}.\frac{7}{13}+\frac{5}{9}.\frac{9}{13}-\frac{5}{9}.\frac{3}{13}\)
= \(\frac{5}{9}\) .(\(\frac{7}{13}+\frac{9}{13}-\frac{3}{13}\) )
= \(\frac{5}{9}\) . 1 = \(\frac{5}{9}\)
17/5×1/2×10/17×-1/8
17/10×-10/136
-170/1360
-1/8
5/54+10/63+5/63+15/63
5/54+15/63+15/63
5/54+30/63
315/3402+1620/3402
1935/3402
\(\frac{\frac{2}{3}+\frac{2}{5}-\frac{2}{9}}{\frac{4}{3}+\frac{4}{5}-\frac{4}{9}}\) _ \(\frac{3-\frac{3}{11}-\frac{3}{17}}{5-\frac{5}{11}-\frac{5}{17}}\)
=\(\frac{2\left(\frac{1}{3}+\frac{1}{5}-\frac{1}{9}\right)}{4\left(\frac{1}{3}+\frac{1}{5}-\frac{1}{9}\right)}\)_ \(\frac{3\left(1-\frac{1}{11}-\frac{1}{17}\right)}{5\left(1-\frac{1}{11}-\frac{1}{17}\right)}\)= \(\frac{2}{4}-\frac{3}{5}\)= \(\frac{-1}{10}\)