Chứng minh rằng tổng \(P=\frac{1}{3^2}-\frac{1}{3^4}+...+\frac{1}{3^{2006}}-\frac{1}{3^{2008}}\) nhỏ hơn 0, 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\frac{2\left(\sqrt{2}-\sqrt{1}\right)}{3.\left(2-1\right)}+\frac{2\left(\sqrt{3}-\sqrt{2}\right)}{5\left(3-2\right)}+...+\frac{2\left(\sqrt{2006}-\sqrt{2005}\right)}{4011\left(2006-2005\right)}\)
\(VT=\frac{2\left(\sqrt{2}-\sqrt{1}\right)}{3}+\frac{2\left(\sqrt{3}-\sqrt{2}\right)}{5}+...+\frac{2\left(\sqrt{2006}-\sqrt{2005}\right)}{4011}\)
Nhận xét: (a-b)2 \(\ge\) 0 => a2 + b2 \(\ge\) 2ab
Áp dụng ta có: \(3=\left(\sqrt{2}\right)^2+\left(\sqrt{1}\right)^2\ge2.\sqrt{2}.\sqrt{1}\)
\(5=\left(\sqrt{3}\right)^2+\left(\sqrt{2}\right)^2\ge2.\sqrt{3}.\sqrt{2}\)
...
\(4011=\left(\sqrt{2006}\right)^2+\left(\sqrt{2005}\right)^2\ge2.\sqrt{2006}.\sqrt{2005}\)
=> \(VT
Gọi a là tử số, b là mẫu số của phân số A
a = \(\frac{2008}{1}\)+ \(\frac{2007}{2}\)+ \(\frac{2006}{3}\)+ ... + \(\frac{1}{2008}\)
Dãy số a có (2008 - 1) : 1 + 1 = 2008 số. Và a = ( \(\frac{2008}{1}\)+ \(\frac{1}{2008}\)) x (2008 : 2)
b = \(\frac{1}{2}\)+ \(\frac{1}{3}\)+ \(\frac{1}{4}\)+ ... + \(\frac{1}{2009}\)
Dãy số b có (2009 - 2) : 1 + 1 = 2008 số. Và b = (\(\frac{1}{2}\)+ \(\frac{1}{2009}\)) x (2008 : 2)
A = [ ( \(\frac{2008}{1}\)+ \(\frac{1}{2008}\)) x (2008 : 2)] : [ (\(\frac{1}{2}\)+ \(\frac{1}{2009}\)) x (2008 : 2)] = ( \(\frac{2008}{1}\)+ \(\frac{1}{2008}\)) : (\(\frac{1}{2}\)+ \(\frac{1}{2009}\))
A = \(\frac{\text{2008 x2008 + 1}}{2008}\)x \(\frac{2x2009+2}{2x2009}\)
A = 2008
\(A=\frac{2008+\frac{2007}{2}+\frac{2006}{3}+\frac{2005}{4}+...+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}}\)
\(=\frac{\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+\left(1+\frac{2005}{4}\right)+...+\left(1+\frac{1}{2007}\right)+\left(1+\frac{1}{2008}\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}}\)
\(=\frac{\frac{2009}{2}+\frac{2009}{3}+\frac{2009}{4}+...+\frac{2009}{2007}+\frac{2009}{2008}+\frac{2009}{2009}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}}\)
\(=\frac{2009\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}}=2009\)
$=\frac{2008+\frac{2007}{2}+\frac{2006}{3}+\frac{2005}{4}+...+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}}$
$1+\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+...+\left(1+\frac{1}{2008}\right)$
$\frac{2009}{2009}+\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2008}$
$2009.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2009}\right)$
A=$\frac{2009.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2009}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2009}}$
A=2009
Ta có:
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
...
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\Leftrightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Leftrightarrow A< 1-\frac{1}{100}< 1\left(đpcm\right)\)
giúp mk vs các bạn ưi ! mk đang cần gấp ai nhanh mik tích cho !nhanh nha help me!thank nhìu
Xét tử ta có:
\(2008+\frac{2007}{2}+\frac{2006}{3}+....+\frac{1}{2008}\)
= \(1+\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+...+\left(1+\frac{1}{2008}\right)\)
= \(\frac{2009}{2009}+\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2008}\)
= \(2009.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2009}\right)\)
=> A = \(\frac{2009.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2009}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2009}}\)
=> A = 2009
A=\(\frac{\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+\left(1+\frac{2005}{4}\right)+...........+\left(1+\frac{2}{2008}\right)+\left(1+\frac{1}{2009}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{2008}+\frac{1}{2009}}\)=\(\frac{\frac{2009}{2}+\frac{2009}{3}+\frac{2009}{4}+....+\frac{2009}{2008}+\frac{2009}{2009}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\frac{ }{ }\)
=\(\frac{2009\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2008}+\frac{1}{2009}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2008}+\frac{1}{2009}}\frac{ }{ }\)
=2009
Vay A=2009
tách số 2008 thành 2008 số 1(=1+1+...+1),sau đó cộng vào 2007 phân số kia, mỗi phân số công thêm 1,ta dc một biểu thức tư đều lan 2009(còn thừa một số 1 các bạn hãy viết nó dưới dạng\(\frac{2009}{2009}\)lúc đó ta dc:A=\(\frac{\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2008}+\frac{2009}{2009}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2009}}\)
và cuối cùng ta rút gọn!có gì chưa hiu nhắn tin lại nhé!
lần sau bảo cô ra đề khó thêm:):):)
\(P=\frac{1}{3^2}-\frac{1}{3^4}+....+\frac{1}{3^{2006}}-\frac{1}{3^{2008}}\)
\(\Rightarrow9P=1-\frac{1}{3^2}+....+\frac{1}{3^{2004}}-\frac{1}{3^{2006}}\)
\(\Rightarrow9P+P=\left(1-\frac{1}{3^2}+....+\frac{1}{3^{2004}}-\frac{1}{3^{2006}}\right)+\left(\frac{1}{3^2}-\frac{1}{3^4}+....+\frac{1}{3^{2006}}-\frac{1}{3^{2008}}\right)\)
\(\Rightarrow10P=1-\frac{1}{3^{2008}}\)
\(\Rightarrow P=\frac{1}{10}-\frac{1}{3^{2008}\cdot10}< \frac{1}{10}=0,1\)
Vậy \(P< 0,1\)