Cho x,y,z là các số khác 0 ; đôi một khác nhau va x+y+z =0 Chứng minh A= \(\left(\frac{x-y}{z}+\frac{y-z}{x}+\frac{z-x}{y}\right)\left(\frac{z}{x-y}+\frac{x}{y-z}+\frac{y}{z-x}\right)=9\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)
\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)
\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)
\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)
=>\(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}\)
=>\(M>\frac{x+y+z+t}{x+y+z+t}=1\)
=>M>1(1)
Lại có:
Áp dụng tính chất: Nếu \(\frac{a}{b}<1=>\frac{a}{b}<\frac{a+m}{b+m}\)
Ta có: \(\frac{x}{x+y+z}<\frac{x+t}{x+y+z+t}\)
\(\frac{y}{x+y+t}<\frac{y+z}{x+y+z+t}\)
\(\frac{z}{y+z+t}<\frac{z+x}{x+y+z+t}\)
\(\frac{t}{x+z+t}<\frac{t+y}{x+y+z+t}\)
=>\(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}<\frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}\)
=>\(M<\frac{2.\left(x+y+z+t\right)}{x+y+z+t}=2\)
=>M<2(2)
Từ (1) và (2)
=>1<M<2
=>M không là số tự nhiên
=>ĐPCM
\(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)
\(\Rightarrow\hept{\begin{cases}x-y=\frac{1}{z}-\frac{1}{y}=\frac{y-z}{yz}\\x-z=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{xz}\end{cases}}\)
\(\Rightarrow\left(x-y\right)\left(x-z\right)\left(y-z\right)=\frac{\left(y-z\right)\left(y-x\right)\left(z-x\right)}{\left(xyz\right)^2}\)
\(\Rightarrow\left(xyz\right)^2=1\Leftrightarrow\orbr{\begin{cases}xyz=1\\xyz=-1\end{cases}}\).
Đặt A=x/x+y+z + y/x+y+t + z/y+z+t +t/x+z+t
-Chứng minh biểu thức nhỏ hơn 2 .
Ta có: A<x+t/x+y+z+t + y+z/x+y+t+z + z+x/y+z+t+x + t+y/x+t+y+z
A<x+t+y+z+z+x+t+y/x+y+t+z
A<2(x+t+y+z)/x+y+t+z
A<2
-Chứng minh biêu thức lớn hơn 1
A>x/x+y+t+z + y/x+y+t+z + t/x+y+z+t + z/x+y+t+z
A>x+y+t+z/z+x+y+t
A>1
Mà 1<A<2
Suy ra A không phải là STN
Có gì sai thì bạn sửa nhé
đặt \(\frac{x-y}{z}=a;\frac{y-z}{x}=b;\frac{z-x}{y}=c\)
\(\Rightarrow\)\(\frac{z}{x-y}=\frac{1}{a};\frac{x}{y-z}=\frac{1}{b};\frac{y}{z-x}=\frac{1}{c}\)
Ta có : \(A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(A=1+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}+1+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}+1=3+\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)
Ta có : \(\frac{b+c}{a}=\left(b+c\right)\frac{1}{a}=\left(\frac{y-z}{x}+\frac{z-x}{y}\right)\frac{z}{x-y}=\frac{y^2-yz+xz-x^2}{xy}.\frac{z}{x-y}=\frac{\left(y-x\right)\left(x+y-z\right)}{xy}.\frac{z}{x-y}=\frac{\left(z-x-y\right)z}{xy}=\frac{2z^2}{xy}\)vì x + y + z = 0 \(\Rightarrow\)z = -x - y
Tương tự : \(\frac{a+c}{b}=\frac{2x^2}{yz}\); \(\frac{a+b}{c}=\frac{2y^2}{xz}\)
\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2z^2}{xy}+\frac{2x^2}{yz}+\frac{2y^2}{xz}=\frac{2\left(x^3+y^3+z^3\right)}{xyz}=\frac{2.3xyz}{xyz}=6\)( vì x + y + z = 0 \(\Rightarrow\)x3 + y3 + z3 = 3xyz )
Vậy A = 3 + 6 = 9