K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2019

a. Xét Tam Giác ABC có góc A + góc B + góc C = 180 độ (định lí)

hay 90 độ + 50 độ + góc C = 180 độ

=> góc C = 180 độ - 90 độ - 50 độ

góc C = 40 độ

b. Xét tam giác ABC vuông tại A có :

BC2 = AC2 + AB2 (py-ta-go)

hay BC2 = 92 + 122

=> BC2 = 81+144

BC2 = 225

=> BC = 15cm

c. Xét tam giác vuông ABD và tam giác vuông EBD có

BD là cạnh chung

góc ABD = góc EBD (vì BD là tia phân giác góc ABC)

=> tam giác ABD = tam giác EBD (cạnh huyền - góc nhọn)

=> AB = EB ( 2 cạnh tương ứng )

d. Xét tam giác ABH và tam giác EBH có :

BH là cạnh chung

góc ABH = góc EBH (vì BD là tia phân giác góc ABC)

AB = EB (chứng minh trên)

=> tam giác ABH = tam giác EBH ( c.g.c )

=> góc BHA = góc BHE ( 2 góc tương ứng )

mà góc BHA + góc BHE = 180 độ ( 2 góc kề bù )

=> góc BHA = góc BHE = 90 độ

=> AE vuông góc với BH tại H

hay AE vuông góc với BD tại H.

Vì tam giác ABH = tam giác EBH ( chứng minh trên )

=> AH = EH ( 2 cạnh tương ứng )

=> H là trung điểm của AE.

10 tháng 2 2019

câu e hơi khó, mình để sau :(

f. Vì tam giác ABD = tam giác EBD ( cmt)

=> AD = ED ( 2 cạnh tương ứng )

Xét tam giác ADF và tam giác EDC có :

góc FAD = góc DEC (= 90 độ )

AD = ED (cmt)

góc FDA = góc CDE ( 2 góc đối đỉnh )

=> tam giác ADF = tam giác EDC ( g.c.g)

=> AF = CE ( 2 cạnh tương ứng )

Vì AF = CE (cmt)

mà AB = EB (cmt)

=> AF + AB = CE + EB

hay BF = CB

=> tam giác BFC cân tại B

còn câu e, g, h mình bó tay, xin lỗi ;(

chúc bạn học tốt ok

Sửa đề: Lấy E thuộc BC sao cho BE=BA

a: Chứng minh ΔBAD=ΔBED

Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

b: ta có: ΔBAD=ΔBED

=>\(\widehat{BAD}=\widehat{BED}\)

mà \(\widehat{BAD}=90^0\)

nên \(\widehat{BED}=90^0\)

=>DE\(\perp\)BC

=>ΔDEC vuông tại E

c: Sửa đề: Tia BA cắt ED tại F

Ta có: ΔBAD=ΔBED

=>DA=DE

Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔDAF=ΔDEC

=>AF=EC

23 tháng 1

bạn vẽ đc hình ko

 

a) Xét ΔADB vuông tại A và ΔEDB vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔADB=ΔEDB(cạnh huyền-góc nhọn)

Suy ra: AD=ED(Hai cạnh tương ứng)

b) Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE(cmt)

\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔADF=ΔEDC(cạnh góc vuông-góc nhọn kề)

Suy ra: DF=DC(hai cạnh tương ứng)

Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

24 tháng 8 2023

loading...

Sửa đề: DE vuông góc với BC tại E

Giải

Do BD là tia phân giác của ABC (gt)

⇒ ∠ABD = ∠CBD

⇒ ∠ABD = ∠EBD

Xét hai tam giác vuông: ∆ABD và ∆EBD có:

BD là cạnh chung

∠ABD = ∠EBD (cmt)

⇒ ∆ABD = ∆EBD (cạnh huyền - góc nhọn)

16 tháng 12 2023

a) Ta có:

- Góc ABD là góc giữa hai phân giác của góc ABC, nên ABD = CBD.

- Góc EBD là góc giữa phân giác của góc ABC và đường thẳng DE, nên EBD = CBD.

Vậy tam giác ABD = tam giác EBD.

 

b) Ta có:

- Góc ABD = góc EBD (do chứng minh ở câu a).

- Góc ADB = góc EDB (do cùng là góc vuông).

- Vậy tam giác ABD = tam giác EBD (do hai góc bằng nhau và góc giữa hai cạnh bằng nhau).

- Do đó, BD vuông góc với AE.

- Ta có AE cắt BD tại I, vậy I là trung điểm của AE.

 

c) Ta có:

- Tia Cx vuông góc với tia BD tại H.

- Trên tia đối của tia AB, lấy điểm F sao cho AF = EC.

- Ta cần chứng minh 3 điểm C, H, F thẳng hàng và AE // FC.

- Vì AF = EC và tam giác ABD = tam giác EBD (do chứng minh ở câu a), nên tam giác AFB = tam giác EFC (do hai cạnh bằng nhau và góc giữa hai cạnh bằng nhau).

- Vậy 3 điểm C, H, F thẳng hàng và AE // FC.

16 tháng 12 2023

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED
b: Ta có: ΔBAD=ΔBED

=>BA=BE và DA=DE

Ta có: BA=BE

=>B nằm trên đường trung trực của AE(1)

Ta có: DA=DE

=>D nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE
=>BD vuông góc với AE tại trung điểm I của AE

c: Xét ΔBFC có \(\dfrac{BA}{AF}=\dfrac{BE}{EC}\)

nên AE//CF

Ta có: BD\(\perp\)AE

AE//CF

Do đó: BD\(\perp\)CF

mà BD\(\perp\)CH

và CH,CF có điểm chung là C

nên C,H,F thẳng hàng

25 tháng 3 2022

giúp mình với

 

 

a: BC=15cm

b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

c: Ta có: DA=DE

mà DE<DC

nên DA<DC

d: Xét ΔBEI vuông tại E và ΔBAC vuông tại A có

BE=BA

\(\widehat{EBI}\) chung

DO đó: ΔBEI=ΔBAC

Suy ra: BI=BC

hay ΔBIC cân tại B

a: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

AD là phân giác

=>BD/CD=AB/AC=3/4

=>4DB=3CD

mà DB+DC=15

nên DB=45/7cm; DC=60/7cm

b: Xet ΔABC vuông tại A và ΔEDC vuông tại E có

góc C chung

=>ΔABC đồng dạng với ΔEDC

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: ΔBAD=ΔBED

=>DA=DE

Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

=>ΔDAF=ΔDEC

=>DF=DC

=>ΔDFC cân tại D

c: Xét ΔBFC có

FE,CAlà đường cao

FE cắt CA tại D

=>D là trực tâm

=>BD vuông góc CF tại H

=>DH vuông góc CF tại H

mà ΔDFC cân tại D

nên H là trung điểm của FC

Xét ΔKFC có

CD là trung tuyến

CI=2/3CD

Do đó: I là trọng tâm

mà H là trung điểm của CF

nên K,I,H thẳng hàng

6 tháng 5 2022

Trả lời nhanh giúp mình zới ạ