K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2019

\(3^n+1⋮10\)

\(\Rightarrow3^n=\left(...9\right)\)

\(3^{n+4}=3^n.81=\left(..9\right).81=\left(...9\right)\Rightarrow3^{n+4}+1=\left(...0\right)⋮10\text{(đpcm)}\)

\(3^{n+1}\)là bội của 10
=>\(3^{n+1}⋮10\)10
mà 1 chia 10 dư 1
=>\(3^n\)chia 10 dư 9
- Xét \(3^{n+4}+1=3^n.3^4+1=81.3^n+1\)
Có 81 chia 10 dư 1
\(3^n\)chia 10 dư 9

\(\Rightarrow81.3^n\)chia 10 dư 1.9 
mà 1 chia 10 dư 1
\(\Rightarrow81.3^n+1⋮10\) 1 chia hết cho 10
\(\Leftrightarrow3^{n+4}+1⋮10\)chia hết cho 10
\(\Rightarrow3^{n+4}+1\) là bội của 10
=> Đpcm

18 tháng 4 2017

3n + 1 là bội của 10

=> 3n + 1 chia hết cho 10

mà 1 chia 10 dư 1

=> 3n chia 10 dư 9

- Xét 3n+4 + 1

= 3n.34 + 1

= 81.3n + 1

Có 81 chia 10 dư 1

3n chia 10 dư 9

=> 81.3n chia 10 dư 1.9 

=> 81.3n chia 10 dư 9

mà 1 chia 10 dư 1

=> 81.3n + 1 chia hết cho 10

=> 3n+4 + 1 chia hết cho 10

=> 3n+4 + 1 là bội của 10

=> Đpcm

18 tháng 4 2017

Nếu 3n +1 là bội của 10 thì 3n +1 có tận cùng là 0 => 3có tận cùng là 9

Mà : 3n+4 +1 = 3. 34 = .....9 . 81 + 1  = .....9 +1 = ......0

hay 3n+4 có tận cùng là 0 => 3n+4 là bội của 10

Vậy 3n+4 là bội của 10.

14 tháng 1 2018

2)

Nếu 3^n  +1 là bội của 10 thì 3^n  +1 có tận cùng là 0

=> 3n có tận cùng là 9

Mà : 3^n+4  +1 = 3^n . 3^4  = .....9 . 81 + 1  = .....9 +1 = ......0

hay 3^n+4  có tận cùng là 0 => 3^n+4  là bội của 10

Vậy 3^n+4  là bội của 10.

14 tháng 1 2018

1.b)

Khi chia cho 3 thì số dư có thể là 1,2 mà 2 số dư khác nhau vậy một số có số dư là 1, một số có số dư là 2. Khi cộng 2 số này lại ta được số dư : 1 + 2 = 3, mà số chia là 3 nên : 3 chia hết cho 3. Vậy hai số đó phải chia hết cho 3

20 tháng 1 2016

bạn lập luận 3^n+ 1 và 3^n+4 +1 cùng 1 tận cùng rồi suy ra nếu 3^n +1 là B(10) thì 3^n+4 +1 cùng là B(10)

 

Bài 1 : 

CÁCH  1

Ta có : \(3^{n+4}+1=3^4.\left(3^n+1\right)-8\left(1\right)\)

Vì \(3^n+1\)và \(80\)đều là bội của 10 nên từ ( 1 ) ta suy ra \(3^{n+4}+1\)cũng là bội của 10

CÁCH 2:

\(3^n+1\)là bội của 10 nên \(3^n\)tận cùng bằng 9 ( 2 )

Ta có : \(3^{n+4}+1=3^n.3^4+1\)\(=3^n.81+1\left(3\right)\)

Từ \(\left(2\right),\left(3\right)\)suy ra \(3^{n+4}+1\)là một số tận cùng bằng 0

Vậy \(3^{n+4}+1\)cũng là bội của 10

Chúc bạn học tốt ( -_- )

13 tháng 6 2018

Cách 1: ta có: 3n +1 là bội của 10

=> 3n +1 chia hết cho 10

mà các số chia hết cho 10 tận cùng 0

=> 3n chia hết cho 9

mà 3n+4  +1 = 3n.34 +1

=> 3n.34 chia hết cho 9

=> 3n .34 +1 chia hết cho 10

=> 3n+4 +1 chia hết cho 10 

=> 3n+4 +1 là bội của 10 ( đpcm)

Cách 2: ta có: 3n+4 +1 = 3n.34 + 1 = 3n.81+ 81 - 80 = 81.( 3n +1) - 80

mà 3n+1 là bội của 10

=> 3n+1 chia hết cho 10

=> 81.(3n+1) chia hết cho 10

mà 80 chia hết cho 10

=> 81.(3n+1) - 80 chia hết cho 10

=> 3n+4+1 chia hết cho 10

=> 3n+4 +1 là bội của 10 (đpcm)

nếu 3n+1 chia hết cho 10 thì phải cộng thêm 1 số chia hết cho 10 mà 4 ko chia hết cho 10

hay giả sử 3^n tận cùng là 5 thì mới +5 chia hết cho 10

mà 3n tận cùng là 3,9,7,1

nên ko thể có 3^n+4+1 chia hết cho 10

13 tháng 12 2017

viết rõ đầu bài bạn nhé 3n+1 không bao giờ bội của 10. vì nó chỉ có thể mang đuôi 1, 3, 9

10 tháng 2 2016

ủng hộ mình lên 120 với các bạn