cho tam giác ABC vuông cân tại A có AH là đường cao.Trên các cạnh BA và AC lần lượt lấy các điểm M và N sao cho B
1)Định dạng tam giác AHB
2)So sánh tam giác AHM với tam giác BHN
3)C/m tam giác MHN vuông cân ở H
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự kẻ hình :
xét tam giác AHB và tam giác HAC có : AB = AC do tam giác ABC vuông cân
AH chung
góc AHB = góc AHC = 90 do ...
=> tam giác AHB = tam giác HAC (cgv - gnk)
=> AH = HB và góc AHB = 90 do...
=> tam giác AHB vuông cân (đn)
b, tam giác AHB = tam giác HAC (Câu a)
=> góc CAH = góc HBA (đn)
góc CAH + góc HAM = 180 (kb)
góc HBA + góc HBN = 180 (kb(
=> góc HAM = góc HBN
xét tam giác HAM và tam giác HBN có : AM = BN (gt)
AH = HB (câu a)
=> tam giác HAM = tam giác HBN (c - g - c(
c, có góc AHM + góc MHB = 90
góc AHM = góc BHN do tam giác HAM = tam giác HBN (Câu b)
=> góc MHN = 90
HM = HN do tam giác HAM = tam giác HBN (câu a)
=> tam giác HMN vuông cân
a: Xét ΔMHB vuông tại H và ΔNKC vuông tại K có
BM=CN
\(\widehat{B}=\widehat{C}\)
Do đó: ΔMHB=ΔNKC
b: Ta có: ΔMHB=ΔNKC
nên HB=KC
Ta có: AH+HB=AB
AK+KC=AC
mà BA=AC
và HB=KC
nên AH=AK
c: Xét ΔAHM vuông tại H và ΔAKN vuông tại K có
AH=AK
HM=KN
Do đó: ΔAHM=ΔAKN
Suy ra: AM=AN