a-b chia hết cho 6 .cm a+17b chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a + 17b
ta có: a - b = (a + 17b) - 18b
do a - b chia hết cho 6
=> 18b cũng chia hết cho 6
=> a + 17b phải chia hết cho 6
Vậy a + 17b chia hết cho 6 (đpcm)
:V đề
lỡ như a = 4
b=5 có chia hết không
bn nên xem lịa đề
chuyển a thành b thì làm dc nha
a + 5 b = a - b + 6b
Vì a - b chia hết cho 6
6b chia hết cho 6
=> a - b + 6b chia hết cho 6
=> a + 5 b chia hết cho 6
a)a-b=(a+5b)-6b
Do a-b chia hết cho 6
6b cũng chia hết cho 6
=>a+5b phải chia hết cho 6(đpcm)
b)a-b=(a+17b)-18b
Do a-b chia hết cho 6
18b cũng chia hết cho 6
=>a+17b phải chia hết cho 6(đpcm)
c)(a-b)-12b=a-13b
Do a-b chia hết cho 6
12b cũng chia hết cho 6
=>a-13b phải chia hết cho 6(đpcm)
a) \(\text{a-b=(a+5b)-6b}\)
Do \(a-b⋮6\)
\(6b⋮6\)
\(\Rightarrow a+5b⋮6\)(đpcm)
b)\(\text{a-b=(a+17b)-18b}\)
Do \(a-b⋮6\)
\(18b⋮6\)
\(\Rightarrow a+17b⋮6\)(đpcm)
c) \(\text{(a-b)-12b=a-13b}\)
Do \(a-b⋮6\)
\(12b⋮6\)
\(\Rightarrow a-13b⋮6\)(đpcm)
Lời giải:
a. $a+5b=(a-b)+6b\vdots 6$ do $a-b\vdots 6$ và $6b\vdots 6$
b. $a+17b=(a-b)+18b\vdots 6$ do $a-b\vdots 6$ và $18b\vdots 6$
c. $a-13b=(a-b)-12b\vdots 6$ do $a-b\vdots 6$ và $12b\vdots 6$
A) a - b chia hết cho 6 và 6b chia hết cho 6 => a - b + 6b chia hết cho 6 => a + 5b chia hết cho 6
B) a - b chia hết cho 6 và 18b chia hết cho 6 => a - b + 18b chia hết cho 6 => a + 17b chia hết cho 6
C) a - b chia hết cho 6 và -12b chia hết cho 6 => a - b - 12b chia hết cho 6 => a -13b chia hết cho 6
Ta có: \(\left(16a+17b\right)\left(17a+16b\right)⋮11\) Vì 11 là số nguyên tố
=> \(\orbr{\begin{cases}16a+17b⋮11\\17a+16b⋮11\end{cases}}\)
Không mất tính tổng quát. G/S: \(16a+17b⋮11\). (1)
Chúng ta chứng minh: \(17a+16b⋮11\)
Vì \(16a+17b⋮11\)
=> \(2\left(16a+17b\right)⋮11\)
=> \(32a+34b⋮11\)
=> \(\left(33a+33b\right)-\left(a-b\right)⋮11\)
Vì \(33a+33b=11\left(3a+3b\right)⋮11\)
=> \(\left(a-b\right)⋮11\)
=> \(\left(33a+33b\right)+\left(a-b\right)⋮11\)
=> \(34a+32b⋮11\)
=> \(2\left(17a+16b\right)⋮11\) mà 2 không chia hết cho 11
=> \(17a+16b⋮11\) (2)
Từ (1) và (2) => \(\left(17a+16b\right)\left(16a+17b\right)⋮\left(11.11\right)\)
=> \(\left(17a+16b\right)\left(16a+17b\right)⋮121\)
Cách khác:
Có: \(\left(16a+17b\right)\left(17a+16b\right)⋮11\) ( vì 11 là số nguyên tố)
=> \(\orbr{\begin{cases}16a+17b⋮11\\17a+16b⋮11\end{cases}}\)
G/s: \(16a+17b⋮11\)(1)
Mà \(\left(16a+17b\right)+\left(17a+16b\right)=\left(33a+33b\right)=11\left(3a+3b\right)⋮11\)
=> \(17a+16b⋮11\)(2)
Từ (1); (2) => \(\left(16a+17b\right)\left(17a+16b\right)⋮121\)
cho S=1-3+32-33+...+398-399
a. Chứng minh: S chia hêt cho 20
b. Rút gọn S, từ đó suy ra 3100 chia 4 dư 1
chịu