cho x-2y=0 .
a.tìm GTNN của A=x^2+3y-2016
b.CM B= x^2+2y+2016 không có GTLN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt t=x+y
x^2 +2xy+6x+6y+2y^2+8=0
x^2+2xy+y^2+6(x+y)+8= -y^2
(x+y)^2 + 6(x+y)+8 = -y^2
t^2 +6t +8= -y^2
(t+2)(t+4) = -y^2
do y^2 >=0 với mọi y
-y^2 <=0 với mọi y
t^2+6t+8<=0
(t+2)(t+4)<=0
* Trường hợp 1: t+2<=0 và t+4>=0 (1)
t<=-2 và t>=4
* trường hợp 2: t+2>=0 và t+4<=0 (2)
t>= -2 và t<= -4 ( vô nghiệm)
Từ (1), (2) ta có:
-4<= t <=-2
-4 <= x+y <= -2
-4 + 2016 <= x+y+ 2016 <= -2 +2016
2012 <= x+y +2016 <= 2014
Bmin= 2012
Bmax= 2014
*Bmin= 2012 khi x+y+2016 = 2012 và -y^2= 0
thì x=-4 và y=0
* Bmax= 2014 khi x+y+2016 = 2014 và -y^2= 0
thì x=-2 và y=0
vậy Bmin= 2012 khi (x,y) = (-4, 0)
Bmax= 2014 khi (x,y)= (-2,0)
a.
\(A=\left(x^4+y^2+1-2x^2y+2x^2-2y\right)+2\left(y^2-2y+1\right)+2026\)
\(A=\left(x^2-y+1\right)^2+2\left(y-1\right)^2+2026\ge2026\)
\(A_{min}=2026\) khi \(\left(x;y\right)=\left(0;1\right)\)
b.
Đặt \(x-1=t\Rightarrow x=t+1\)
\(\Rightarrow A=\dfrac{3\left(t+1\right)^2-8\left(t+1\right)+6}{t^2}=\dfrac{3t^2-2t+1}{t^2}=\dfrac{1}{t^2}-\dfrac{2}{t}+3=\left(\dfrac{1}{t}-1\right)^2+2\ge2\)
\(A_{min}=2\) khi \(t=1\Rightarrow x=2\)
\(A=\dfrac{3x^2-8x+6}{x^2-2x+1}=\dfrac{3x^2-8x+6}{\left(x-1\right)^2}=\dfrac{2\left(x-1\right)^2+\left(x-2\right)^2}{\left(x-1\right)^2}=2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)
Dấu \("="\Leftrightarrow x=2\)
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
1) ta có : \(x^2+5y^2-4xy+2y=3\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=2\)
\(\Leftrightarrow\left(x-2y\right)^2=2-\left(y+1\right)^2\ge0\) \(\Leftrightarrow2\ge\left(y+1\right)^2\Leftrightarrow-\sqrt{2}\le y+1\le\sqrt{2}\)
\(\Leftrightarrow-\sqrt{2}-1\le y\le\sqrt{2}-1\)
ta lại có : \(\left(y+1\right)^2=2-\left(x-2y\right)^2\ge0\)
\(\Leftrightarrow2\ge\left(x-2y\right)^2\Leftrightarrow-\sqrt{2}\le x-2y\le\sqrt{2}\)
\(\Leftrightarrow-\sqrt{2}+2y\le x\le\sqrt{2}+2y\Leftrightarrow-2-3\sqrt{2}\le x\le-2+3\sqrt{2}\)
vậy \(x_{max}=-2+3\sqrt{2}\)
dâu "=" xảy ra khi \(y=\sqrt{2}-1\)
câu 3 : ta có : \(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Leftrightarrow y^2=-\left(x+y\right)^2-7\left(x+y\right)-10\ge0\)
\(\Leftrightarrow-5\le x+y\le-2\)
\(\Rightarrow S_{max}=-2\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-2\end{matrix}\right.\Leftrightarrow y=0;x=-2\)
\(S_{min}=-5\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-5\end{matrix}\right.\Leftrightarrow y=0;x=-5\)
bài này có trong đề thi hsg trường mk :)
Mình biết hơi muộn
\(A=x^2+2xy+6x+6y+2y^2+8\Leftrightarrow x^2+2xy+6x+6y+y^2+9-1\)
\(A=0\Rightarrow\left(x+y+3\right)^2+y^2-1=0\)
\(\Rightarrow-1\le x+y+3\le1\) .
\(\Rightarrow2012\le x+y+3+2013\le2014\)
\(\Rightarrow2012\le B\le2014\)
a) =>x=2y. thay vào (a) ta được A=4y2+3y-2016.
A=(2y)2+2.2.\(\dfrac{3}{4}\).y+\(^{\left(\dfrac{3}{4}\right)^2}\)-2016-\(^{\left(\dfrac{3}{4}\right)^2}\)=(2y+\(\dfrac{3}{4}\))2-\(\dfrac{32265}{16}\)
=> minA=-\(\dfrac{32265}{16}\)
b) A=(2y+\(\dfrac{3}{4}\))2-\(\dfrac{32265}{16}\) không có giá trị lớn nhất vì (2y+\(\dfrac{3}{4}\))2 không có giá trị lớn nhất. (không bt chứng minh thế nào)