K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2021

Đặt \(a\) và \(a+1\) lần lượt là 2 thừa số của tích hai số nguyên liên tiếp(\(a\inℤ\))
Theo đề bài ta có:
\(25x+46=a\left(a+1\right)\)
\(\Leftrightarrow\left(25x+46\right)a=a^2\left(a+1\right)\)

\(\Leftrightarrow25ax+46a=a^3+a\)

\(\Leftrightarrow25ax+45a=a^3\)

\(\Leftrightarrow5a\left(x+9\right)=a^3\)

\(\Leftrightarrow5\left(x+9\right)=a^2\)

Vậy tập nghiệm \(S=\left\{x\inℤ|x=a^2\div5-9\right\}\left(a^2⋮5\right)\)

a051015
x-9-41136

Biểu diễn x trên đồ thị hàm số: \(x=3a-9\left(đk:x\inℤ,x⋮5\right)\)

P/S: Không hiểu chỗ nào cứ hỏi mình:))

28 tháng 4 2021

à ko mik lm sai r đợi chút nhé để mik lm lại

AH
Akai Haruma
Giáo viên
18 tháng 7 2023

Lời giải:

Xét modun $3$ của $n$ thì ta dễ dàng thấy $n^2+n+2$ không chia hết cho $3$ với mọi $n$. Do đó $n^2+n+2$ nếu thỏa mãn đề thì chỉ có thể là tích 2 số tự nhiên liên tiếp (nếu từ 3 số tự nhiên liên tiếp thì sẽ chia hết cho 3) 

Đặt $n^2+n+2=a(a+1)$ với $a\in\mathbb{N}$

$\Leftrightarrow 4n^2+4n+8=4a^2+4a$

$\Leftrightarrow (2n+1)^2+8=(2a+1)^2$
$\Leftrightarrow 8=(2a+1)^2-(2n+1)^2=(2a-2n)(2a+2n+2)$

$\Leftrightarrow 2=(a-n)(a+n+1)$

Hiển nhiên $a+n+1> a-n$ và $a+n+1>0$ với mọi $a,n\in\mathbb{N}$ nên:

$a+n+1=2; a-n=1$

$\Rightarrow n=0$ (tm)