K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2023

Bạn xem lại đề nhé.

a) \(A=x^2+5y^2+2xy-4x-8y+2015\)

 

\(A=x^2-4x+4-2y\left(x-2\right)+y^2+2011+4y^2\)

\(A=\left(x-2\right)^2-2y\left(x-2\right)+y^2+2011+4y^2\)

\(A=\left(x-2-y\right)^2+4y^2+2011\)

Vì \(\left(x-y-2\right)^2\ge0;4y^2\ge0\)

\(\Rightarrow A_{min}=2011\)

Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}x-y-2=0\\4y^2=0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

15 tháng 10 2017

a)ta có:

\(f\left(x\right):\left(x+1\right)\: dư\: 6\Rightarrow f\left(x\right)-6⋮\left(x+1\right)\\ hay\: 1-a+b-6=0\\ \Leftrightarrow b-a-5=0\Leftrightarrow b-a=5\left(1\right)\)

tương tự: \(2^2+2a+b-3=0\\ 2a+b=-1\left(2\right)\)

từ (1) và(2) => \(\left\{{}\begin{matrix}b-a=5\\2a+b=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\)

15 tháng 10 2017

Câu a :

Theo đề bài ta có hệ phương trình :

\(\left\{{}\begin{matrix}f\left(-1\right)=1-a+b=6\\f\left(2\right)=4+2a+b=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\2a+b=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\)

Vậy đa thức \(f\left(x\right)=x^2-2x+3\)

NV
12 tháng 3 2021

\(f\left(-1\right)=-4\Rightarrow-1+a-b+c=-4\)

\(\Rightarrow a-b+c=-3\)

\(f\left(2\right)=5\Rightarrow8+4a+2b+c=5\Rightarrow4a+2b+c=-3\)

\(\Rightarrow3a+3b=0\Rightarrow a=-b\)

\(\Rightarrow a^{2019}=-b^{2019}\Rightarrow a^{2019}+b^{2019}=0\)

\(\Rightarrow A=0\)

Xl m.n :)) Hôm nay t rãnh nên làm jup 1 đứa bạn cái bài nì . Ai chưa biết thì tham khảo luôn nha luôn nha :)) Đề tìm số dư khi chia \(x^{2015}+x^{1945}+x^{1930}-x^2-x+1\) cho x2 - 1 Giải : Đặt \(f\left(x\right)=x^{2015}+x^{1945}+x^{1930}-x^2-x+1\) Gọi thương khi chia f(x) cho x2 - 1 là G(x) và số dư là ax + b (*) Theo đề ra ta có : \(f\left(x\right)=\left(x^2-1\right).G\left(x\right)+ax+b\) Vì đẳng thức đùng ( \(\forall x\) ) . Ta đó suy ra : +...
Đọc tiếp

Xl m.n :))

Hôm nay t rãnh nên làm jup 1 đứa bạn cái bài nì .

Ai chưa biết thì tham khảo luôn nha luôn nha :))

Đề tìm số dư khi chia \(x^{2015}+x^{1945}+x^{1930}-x^2-x+1\) cho x2 - 1

Giải :

Đặt \(f\left(x\right)=x^{2015}+x^{1945}+x^{1930}-x^2-x+1\)

Gọi thương khi chia f(x) cho x2 - 1 là G(x) và số dư là ax + b (*)

Theo đề ra ta có :

\(f\left(x\right)=\left(x^2-1\right).G\left(x\right)+ax+b\)

Vì đẳng thức đùng ( \(\forall x\) ) . Ta đó suy ra :

+ \(f\left(1\right)=1^{2015}+1^{1945}+1^{1930}-1^2-1+1=\left(1^2-1\right).G\left(1\right)+ax+b\)

=> a + b = 2 (1)

+ \(f\left(-1\right)=\left(-1\right)^{2015}+\left(-1\right)^{1945}+\left(-1\right)^{1930}-\left(-1\right)^2-\left(-1\right)+\left(-1\right)=\left[\left(-1\right)^2-1\right].G\left(1-\right)+a.\left(-1\right)+b\)

=> b - a = 0 (2)

Cộng (1) và (2)

=> (a + b ) + ( b - a ) = 2+0

=> b = 1

=> a = 1 .

Thay vào (*) ta có :

Số dư là x + 1

Thân ~

~ S.b ~

17
2 tháng 1 2017

Tuyệt vời. Cảm ơn em đã chia sẻ.

2 tháng 1 2017

Cảm ơn nha :))