K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2016

\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{16}\left(1+2+3+...+2016\right)\)

\(A=1+\frac{1}{2}.\frac{\left(1+2\right).2}{2}+\frac{1}{3}.\frac{\left(1+3\right).3}{2}+\frac{1}{4}.\frac{\left(1+4\right).4}{2}+...+\frac{1}{16}.\frac{\left(1+16\right).16}{2}\)

\(A=1+\frac{1}{2}.\frac{3.2}{2}+\frac{1}{3}.\frac{4.3}{2}+\frac{1}{4}.\frac{5.4}{2}+...+\frac{1}{16}.\frac{17.16}{2}\)

\(A=1+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{17}{2}\)

\(A=\frac{1}{2}.\left(2+3+4+5+...+17\right)\)

\(A=\frac{1}{2}.\frac{\left(2+17\right).16}{2}=19.4=76\)

12 tháng 11 2016

hik như vế sau là a làm theo 16 chứ k fai 2016 hay sao ấy

14 tháng 4 2019

\(T=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)

\(T=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)

\(T=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)

\(T=2.\left(\frac{1}{2}-\frac{1}{2010}\right)\)

\(T=2.\frac{502}{1005}=\frac{1004}{1005}\)

\(\Rightarrow T=\frac{1004}{1005}\)

14 tháng 4 2019

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2007.2009}+\frac{1}{2009+2011}\)

\(A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2009+2011}\right)\)

\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2009}-\frac{1}{2011}\right)\)

\(A=\frac{1}{2}.\left(1-\frac{1}{2011}\right)\)

\(A=\frac{1}{2}.\frac{2010}{2011}\)

\(\Rightarrow A=\frac{1005}{2011}\)

20 tháng 2 2018

b, \(2^n\left(2^{-1}+4\right)=9\cdot2^5\)

=> \(2^n\cdot\frac{9}{2}=9\cdot2^5\)

=> \(2^n=2^6\)

Vậy \(n=6\left(tm\right)\)

20 tháng 2 2018

a, \(A=4\cdot16\cdot\frac{9}{16}\cdot\frac{4}{5}\cdot\frac{27}{8}=\frac{486}{5}=97,2\)

31 tháng 1 2016

Áp dụng tc: \(\frac{1}{n}.\left(1+2+3+...+n\right)=\frac{1}{n}.\frac{n.\left(n+1\right)}{2}=\frac{n+1}{2}\)

=> H = \(\frac{1}{2}.2+\frac{1}{2}.3+\frac{1}{2}.4+...+\frac{1}{2}.85=\frac{1}{2}.\left(2+3+4+...+85\right)\)

        = \(\frac{1}{2}.\left(1+2+3+4+...+85-1\right)=\frac{1}{2}.\left(\frac{85.86}{2}-1\right)=\frac{1}{2}.3654=1827\)

5 tháng 7 2016

\(D=-\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)\cdot...\cdot\left(1-\frac{1}{100^2}\right).\)

\(D=-\frac{2^2-1}{2^2}\cdot\frac{3^2-1}{3^2}\cdot\frac{4^2-1}{4^2}\cdot...\cdot\frac{100^2-1}{100^2}.\)

\(D=-\frac{1\cdot3}{2^2}\cdot\frac{2\cdot4}{3^2}\cdot\frac{3\cdot5}{4^2}\cdot\frac{4\cdot6}{5^2}\cdot...\cdot\frac{98\cdot100}{99^2}\cdot\frac{99\cdot101}{100^2}=-\frac{1}{2}\cdot\frac{101}{100}=-\frac{101}{200}\)