Tìm x biết
\(\frac{0,1\left(6\right)+0,\left(3\right)}{0,\left(3\right)+1,1\left(6\right)}\)- x=0,(2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x biết
\(\frac{0,1\left(6\right)+0,\left(3\right)}{0,\left(3\right)+1,1\left(6\right)}\)- x=0,(2)
B1 :
\(\frac{0,1\left(6\right)+0,\left(3\right)}{0,\left(3\right)+1,1\left(6\right)}\) . x = 0,(2)
=\(\frac{0,5}{1,5}\).x=0,(2)
x=0,(2):\(\frac{0,5}{1,5}\)
x=0,(6)=\(\frac{2}{3}\)
b2:
[12,(1) - 2,3(6)] : 4,(21)
=9,7(4):4,(21)
=\(\frac{9,7\left(4\right)}{4,\left(21\right)}\)
= \(\frac{1}{11}\cdot x=0.\left(2\right)\)
\(\Rightarrow x=0,\left(2\right):\frac{1}{11}\)
x = 0
\(\frac{0,1\left(6\right)+0,\left(03\right)}{0,\left(3\right)+1,1\left(6\right)}\times x=0,2\)
\(=\frac{1}{11}\times x=0,\left(2\right)\)
\(\Rightarrow x=0,\left(2\right)\div\frac{1}{11}\)
\(8,1-\left(x-6\right)=4\left(2-2x\right)\)
\(\Leftrightarrow1-x+6=8-8x\)
\(\Leftrightarrow-x+8x=8-1-6\)
\(\Leftrightarrow7x=1\)
\(\Leftrightarrow x=\dfrac{1}{7}\)
\(9,\left(3x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-5\end{matrix}\right.\)
\(10,\left(x+3\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\varnothing\end{matrix}\right.\)
`8)1-(x-5)=4(2-2x)`
`<=>1-x+5=8-6x`
`<=>5x=2<=>x=2/5`
`9)(3x-2)(x+5)=0`
`<=>[(x=2/3),(x=-5):}`
`10)(x+3)(x^2+2)=0`
Mà `x^2+2 > 0 AA x`
`=>x+3=0`
`<=>x=-3`
`11)(5x-1)(x^2-9)=0`
`<=>(5x-1)(x-3)(x+3)=0`
`<=>[(x=1/5),(x=3),(x=-3):}`
`12)x(x-3)+3(x-3)=0`
`<=>(x-3)(x+3)=0`
`<=>[(x=3),(x=-3):}`
`13)x(x-5)-4x+20=0`
`<=>x(x-5)-4(x-5)=0`
`<=>(x-5)(x-4)=0`
`<=>[(x=5),(x=4):}`
`14)x^2+4x-5=0`
`<=>x^2+5x-x-5=0`
`<=>(x+5)(x-1)=0`
`<=>[(x=-5),(x=1):}`
a) \(\Rightarrow\dfrac{1}{3}x\left(x-2\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow\left(x+5\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)
c) \(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
e) \(\Rightarrow\left(x+2\right)\left(x+2-x+2\right)=0\Rightarrow\left(x+2\right).4=0\Rightarrow x=-2\)
f) \(\Rightarrow x\left(2x-3\right)+2\left(2x-3\right)=0\Rightarrow\left(2x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\)
g) \(\Rightarrow2\left(3x-2\right)^2-\left(3x-2\right)\left(3x+2\right)=0\Rightarrow\left(3x-2\right)\left(3x-6\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=2\end{matrix}\right.\)
h) \(\Rightarrow x\left(x+1\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)
i) \(\Rightarrow4x\left(x+1\right)+5\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(4x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{5}{4}\end{matrix}\right.\)
\(\left(3-\frac{1}{2}x\right)\left(\left|x+\frac{3}{4}\right|-\frac{5}{6}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3-\frac{1}{2}x=0\\\left|x+\frac{3}{4}\right|-\frac{5}{6}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x=3\\\left|x+\frac{3}{4}\right|=\frac{5}{6}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=6\\x=\frac{1}{12}\\x=\frac{-19}{12}\end{cases}}\)
\(\left(3-\frac{1}{2}x\right)\cdot\left(\left|x+\frac{3}{4}\right|-\frac{5}{6}\right)=0\)
\(\Rightarrow\hept{\begin{cases}3-\frac{1}{2}x=0\\\left|x+\frac{3}{4}\right|-\frac{5}{6}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=6\\x+\frac{3}{4}=\pm\frac{5}{6}\end{cases}}\)
Ta có
\(x+\frac{3}{4}=\pm\frac{5}{6}\)
\(\hept{\begin{cases}x+\frac{3}{4}=\frac{5}{6}\\x+\frac{3}{4}=-\frac{5}{6}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{12}\\x=-\frac{19}{12}\end{cases}}}\)
Vậy \(x\in\left\{3;\frac{1}{2};-\frac{19}{12}\right\}\)
a) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)
\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)
\(\Leftrightarrow24x+25=15\)
\(\Leftrightarrow24x=-10\)
hay \(x=-\dfrac{5}{12}\)
b) Ta có: \(2x^3-50x=0\)
\(\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
c) Ta có: \(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)
\(\Leftrightarrow x^2+8x-9=0\)
\(\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=1\end{matrix}\right.\)
d) Ta có: \(x^3-x=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
e) Ta có: \(27x^3-27x^2+9x-1=1\)
\(\Leftrightarrow\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2-1^3=1\)
\(\Leftrightarrow\left(3x-1\right)^3=1\)
\(\Leftrightarrow3x-1=1\)
\(\Leftrightarrow3x=2\)
hay \(x=\dfrac{2}{3}\)
a/ \(x=\dfrac{-5}{12}\)
b/ \(x\approx-1,9526\)
c/ \(x=\dfrac{21-i\sqrt{199}}{10}\)
d/ \(x=\dfrac{-20}{13}\)
\(\frac{0,1\left(6\right)+0,\left(3\right)}{0,\left(3\right)+1,1\left(6\right)}-x=0,\left(2\right)\)
\(\Rightarrow\frac{\frac{1}{6}+\frac{1}{3}}{\frac{1}{3}+\frac{7}{6}}-x=\frac{2}{9}\)
\(\Rightarrow\frac{\frac{1}{2}}{\frac{3}{2}}-x=\frac{2}{9}\)
\(\Rightarrow\frac{1}{3}-x=\frac{2}{9}\)
\(\Rightarrow x=\frac{1}{3}-\frac{2}{9}=\frac{1}{9}\)
Vậy \(x=\frac{1}{9}\)