1.Tìm GTNN,GTLN của E = \(\frac{3-4x}{2x^2+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2x+3\)
\(=\left(x^2+2x+1\right)+2\)
\(=\left(x+1\right)^2+2\)
Do \(\left(x+1\right)^2\ge0\) với mọi x
\(\Rightarrow x^2+2x+3\ge2\)
Dấu = khi x=-1
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
\(\left|2x-1\right|+3\ge3\Leftrightarrow\dfrac{3+\left|2x-1\right|}{14}\ge\dfrac{3}{14}\)
Dấu \("="\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)
\(\dfrac{-4x^2+4x}{15}=\dfrac{-4x^2+4x-1+1}{15}=\dfrac{-\left(2x-1\right)^2+1}{15}\)
Ta có \(-\left(2x-1\right)^2+1\le1\Leftrightarrow\dfrac{-\left(2x-1\right)^2+1}{15}\le\dfrac{1}{15}\)
Dấu \("="\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)
\(E=\dfrac{\left(x-2\right)^2-\left(x^2+1\right)}{2\left(x^2+1\right)}\)\(=\dfrac{\left(x-2\right)^2}{2\left(x^2+1\right)}-\dfrac{1}{2}\ge\dfrac{-1}{2}\)
Vậy Emin=\(\dfrac{-1}{2}\Leftrightarrow x=2\)
\(E=\dfrac{4x^2+4-4x-1-4x^2}{2\left(x^2+1\right)}\)\(=2-\dfrac{4x^2+4x+1}{2\left(x^2+1\right)}\)=\(2-\dfrac{\left(x+\dfrac{1}{2}\right)^2}{2\left(x^2+1\right)}\le2\)
Vậy Emax=2\(\Leftrightarrow x=\dfrac{-1}{2}\)
a.
\(A=\dfrac{2013}{x^2}-\dfrac{2}{x}+1=2013\left(\dfrac{1}{x}-\dfrac{1}{2013}\right)^2+\dfrac{2012}{2013}\ge\dfrac{2012}{2013}\)
Dấu "=" xảy ra khi \(x=2013\)
b.
\(B=\dfrac{4x^2+2-4x^2+4x-1}{4x^2+2}=1-\dfrac{\left(2x-1\right)^2}{4x^2+2}\le1\)
\(B_{max}=1\) khi \(x=\dfrac{1}{2}\)
\(B=\dfrac{-2x^2-1+2x^2+4x+2}{4x^2+2}=-\dfrac{1}{2}+\dfrac{\left(x+1\right)^2}{2x^2+1}\ge-\dfrac{1}{2}\)
\(B_{max}=-\dfrac{1}{2}\) khi \(x=-1\)
\(E=\frac{3-4x}{2x^2+2}=\frac{4x^2+4-\left(4x^2+4x+1\right)}{2x^2+2}=2-\frac{\left(2x+1\right)^2}{2x^2+2}\le2\forall x\)
Dấu "=" xảy ra khi: \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)
\(E=\frac{3-4x}{2x^2+2}=\frac{x^2-4x+4-\left(x^2+1\right)}{2x^2+2}=\frac{\left(x-2\right)^2}{2x^2+2}-\frac{1}{2}\ge-\frac{1}{2}\forall x\)
Dấu "=" xảy ra khi: \(x-2=0\Leftrightarrow x=2\)