Cho tam giac ABC can tai A (A <90do).Ke BD vuong goc AC(D thuoc AC)<CE vuong goc AB (E thuoc AB),BD va CE cai nhau tai H
a)Chung minh BD=CE
b)Chung minh tam giac BHC can
c)Chung minh AH la duong trung truc BC
d)Tren tia BD lay diem K sao cho D la trung diem BK.So sanh goc ECB va goc DKC
a) Có \(\Delta ABC\)cân \(\Rightarrow AB=AC\)
Xét \(\Delta ABD\)và \(\Delta ACE\)có :
\(\widehat{EAD:}chung\)
\(AB=AC\)
\(\widehat{ABD}=\widehat{AEC}\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta AEC\left(ch-gn\right)\)
\(\Rightarrow BD=CE\left(dpcm\right)\)
b)Xét \(\Delta BEC\)và \(\Delta CDB\)có :
\(CE=BD\left(cmt\right)\)
\(\widehat{BEC}=\widehat{CDB}=90^o\)
\(BC:chung\)
\(\Rightarrow\Delta BEC=\Delta CDB\left(ch-cgv\right)\)
\(\Rightarrow\widehat{BCE}=\widehat{CBD}\)